select_feature_set_svmT_select_feature_set_svmSelectFeatureSetSvmSelectFeatureSetSvmselect_feature_set_svm (算子)
名称
select_feature_set_svmT_select_feature_set_svmSelectFeatureSetSvmSelectFeatureSetSvmselect_feature_set_svm — 选择特征的最佳组合来对提供的数据进行分类。
签名
void SelectFeatureSetSvm(const HTuple& ClassTrainDataHandle, const HTuple& SelectionMethod, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* SVMHandle, HTuple* SelectedFeatureIndices, HTuple* Score)
HTuple HClassSvm::SelectFeatureSetSvm(const HClassTrainData& ClassTrainDataHandle, const HString& SelectionMethod, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* Score)
HTuple HClassSvm::SelectFeatureSetSvm(const HClassTrainData& ClassTrainDataHandle, const HString& SelectionMethod, const HString& GenParamName, double GenParamValue, HTuple* Score)
HTuple HClassSvm::SelectFeatureSetSvm(const HClassTrainData& ClassTrainDataHandle, const char* SelectionMethod, const char* GenParamName, double GenParamValue, HTuple* Score)
HTuple HClassSvm::SelectFeatureSetSvm(const HClassTrainData& ClassTrainDataHandle, const wchar_t* SelectionMethod, const wchar_t* GenParamName, double GenParamValue, HTuple* Score)
(
Windows only)
HClassSvm HClassTrainData::SelectFeatureSetSvm(const HString& SelectionMethod, const HTuple& GenParamName, const HTuple& GenParamValue, HTuple* SelectedFeatureIndices, HTuple* Score) const
HClassSvm HClassTrainData::SelectFeatureSetSvm(const HString& SelectionMethod, const HString& GenParamName, double GenParamValue, HTuple* SelectedFeatureIndices, HTuple* Score) const
HClassSvm HClassTrainData::SelectFeatureSetSvm(const char* SelectionMethod, const char* GenParamName, double GenParamValue, HTuple* SelectedFeatureIndices, HTuple* Score) const
HClassSvm HClassTrainData::SelectFeatureSetSvm(const wchar_t* SelectionMethod, const wchar_t* GenParamName, double GenParamValue, HTuple* SelectedFeatureIndices, HTuple* Score) const
(
Windows only)
static void HOperatorSet.SelectFeatureSetSvm(HTuple classTrainDataHandle, HTuple selectionMethod, HTuple genParamName, HTuple genParamValue, out HTuple SVMHandle, out HTuple selectedFeatureIndices, out HTuple score)
HTuple HClassSvm.SelectFeatureSetSvm(HClassTrainData classTrainDataHandle, string selectionMethod, HTuple genParamName, HTuple genParamValue, out HTuple score)
HTuple HClassSvm.SelectFeatureSetSvm(HClassTrainData classTrainDataHandle, string selectionMethod, string genParamName, double genParamValue, out HTuple score)
HClassSvm HClassTrainData.SelectFeatureSetSvm(string selectionMethod, HTuple genParamName, HTuple genParamValue, out HTuple selectedFeatureIndices, out HTuple score)
HClassSvm HClassTrainData.SelectFeatureSetSvm(string selectionMethod, string genParamName, double genParamValue, out HTuple selectedFeatureIndices, out HTuple score)
描述
select_feature_set_svmselect_feature_set_svmSelectFeatureSetSvmSelectFeatureSetSvmSelectFeatureSetSvmselect_feature_set_svm selects an optimal subset from a set of
features to solve a given classification problem.
The classification problem has to be specified with annotated training data
in ClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleclassTrainDataHandleclass_train_data_handle and will be classified by a
support vector machine (SVM). Details of the properties of this
classifier can be found in create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm。
The result of the operator is a trained classifier that is returned in
SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle. Additionally, the list of indices or names of the
selected features
is returned in SelectedFeatureIndicesSelectedFeatureIndicesSelectedFeatureIndicesSelectedFeatureIndicesselectedFeatureIndicesselected_feature_indices. To use this classifier,
calculate for new input data all features mentioned in
SelectedFeatureIndicesSelectedFeatureIndicesSelectedFeatureIndicesSelectedFeatureIndicesselectedFeatureIndicesselected_feature_indices and pass them to the classifier.
A possible application of this operator can be a comparison of
different parameter sets for certain feature extraction techniques. Another
application is to search for a feature that is discriminating between
different classes.
Additionally, the values for 'nu'"nu""nu""nu""nu""nu" and
'gamma'"gamma""gamma""gamma""gamma""gamma" can be estimated for the SVM. To only estimate these
two parameters without altering the feature set,
the feature vector has to be specified as one large subfeature.
To define the features that should be selected from
ClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleclassTrainDataHandleclass_train_data_handle, the dimensions of the
feature vectors in ClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleclassTrainDataHandleclass_train_data_handle can be grouped into
subfeatures by calling set_feature_lengths_class_train_dataset_feature_lengths_class_train_dataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataset_feature_lengths_class_train_data。A subfeature can contain several subsequent elements of a feature vector.
The operator decides for each of these subfeatures, if it is better to
use it for the classification or leave it out.
The indices of the selected subfeatures are returned in
SelectedFeatureIndicesSelectedFeatureIndicesSelectedFeatureIndicesSelectedFeatureIndicesselectedFeatureIndicesselected_feature_indices.
If names were set in set_feature_lengths_class_train_dataset_feature_lengths_class_train_dataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataset_feature_lengths_class_train_data, these
names are returned instead of the indices.
If set_feature_lengths_class_train_dataset_feature_lengths_class_train_dataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataset_feature_lengths_class_train_data was not called for
ClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleclassTrainDataHandleclass_train_data_handle before, each element of the feature vector
is considered as a subfeature.
The selection method
SelectionMethodSelectionMethodSelectionMethodSelectionMethodselectionMethodselection_method is either a greedy search 'greedy'"greedy""greedy""greedy""greedy""greedy"
(iteratively add the feature with highest gain)
or the dynamically oscillating search 'greedy_oscillating'"greedy_oscillating""greedy_oscillating""greedy_oscillating""greedy_oscillating""greedy_oscillating"
(add the feature with highest gain and test then if any of the already added
features can be left out without great loss).
The method 'greedy'"greedy""greedy""greedy""greedy""greedy" is generally preferable, since it is faster.
Only in cases when the subfeatures are low-dimensional or redundant,
the method 'greedy_oscillating'"greedy_oscillating""greedy_oscillating""greedy_oscillating""greedy_oscillating""greedy_oscillating" should be chosen.
The optimization criterion is the classification rate of
a two-fold cross-validation of the training data.
The best achieved value is returned in ScoreScoreScoreScorescorescore。
The parameters 'nu'"nu""nu""nu""nu""nu" and 'gamma'"gamma""gamma""gamma""gamma""gamma" for the SVM that is used
to classify can be set to 'auto'"auto""auto""auto""auto""auto" by using the
parameters GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name and GenParamValueGenParamValueGenParamValueGenParamValuegenParamValuegen_param_value. If they are
set to 'auto'"auto""auto""auto""auto""auto", the estimated optimal 'nu'"nu""nu""nu""nu""nu" and/or
'gamma'"gamma""gamma""gamma""gamma""gamma" is estimated. The automatic estimation of 'nu'"nu""nu""nu""nu""nu"
and 'gamma'"gamma""gamma""gamma""gamma""gamma" can take a substantial amount of time (up to days,
depending on the data set and the number of features).
Additionally, there
is the parameter 'mode'"mode""mode""mode""mode""mode" which can be either set to
'one-versus-all'"one-versus-all""one-versus-all""one-versus-all""one-versus-all""one-versus-all" or 'one-versus-one'"one-versus-one""one-versus-one""one-versus-one""one-versus-one""one-versus-one". An explanation of
the two modes as well as of the parameters 'nu'"nu""nu""nu""nu""nu" and
'gamma'"gamma""gamma""gamma""gamma""gamma" as the kernel parameter of the radial basis function (RBF)
kernel can be found in create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm。
注意
This operator may take considerable time, depending on the size of the
data set in the training file, and the number of features.
Please note, that this operator should not be called, if only a small
set of training data is available. Due to the risk of overfitting the
operator select_feature_set_svmselect_feature_set_svmSelectFeatureSetSvmSelectFeatureSetSvmSelectFeatureSetSvmselect_feature_set_svm may deliver a classifier with
a very high score. However, the classifier may perform poorly when tested.
执行信息
- 多线程类型:可重入(与非独占算子并行运行)。
- 多线程作用域:全局(可从任何线程调用)。
- 在内部数据级别上自动并行化。
此算子返回一个句柄。请注意,即使该句柄被用作特定算子的输入参数,这些算子仍可能改变此句柄类型的实例状态。
参数
ClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleClassTrainDataHandleclassTrainDataHandleclass_train_data_handle (输入控制) class_train_data → HClassTrainData, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
训练数据的句柄。
SelectionMethodSelectionMethodSelectionMethodSelectionMethodselectionMethodselection_method (输入控制) string → HTuplestrHTupleHtuple (string) (string) (HString) (char*)
Method to perform the selection.
默认值:
'greedy'
"greedy"
"greedy"
"greedy"
"greedy"
"greedy"
值列表:
'greedy'"greedy""greedy""greedy""greedy""greedy", 'greedy_oscillating'"greedy_oscillating""greedy_oscillating""greedy_oscillating""greedy_oscillating""greedy_oscillating"
GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name (输入控制) string(-array) → HTupleMaybeSequence[str]HTupleHtuple (string) (string) (HString) (char*)
Names of generic parameters to configure the
selection process and the classifier.
默认值:
[]
值列表:
'gamma'"gamma""gamma""gamma""gamma""gamma", 'mode'"mode""mode""mode""mode""mode", 'nu'"nu""nu""nu""nu""nu"
GenParamValueGenParamValueGenParamValueGenParamValuegenParamValuegen_param_value (输入控制) number(-array) → HTupleMaybeSequence[Union[int, str, float]]HTupleHtuple (real / integer / string) (double / int / long / string) (double / Hlong / HString) (double / Hlong / char*)
Values of generic parameters to configure the
selection process and the classifier.
默认值:
[]
建议值:
0.02, 0.05, 'auto'"auto""auto""auto""auto""auto", 'one-versus-one'"one-versus-one""one-versus-one""one-versus-one""one-versus-one""one-versus-one", 'one-versus-all'"one-versus-all""one-versus-all""one-versus-all""one-versus-all""one-versus-all"
SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle (输出控制) class_svm → HClassSvm, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
A trained SVM classifier using only the selected
features.
SelectedFeatureIndicesSelectedFeatureIndicesSelectedFeatureIndicesSelectedFeatureIndicesselectedFeatureIndicesselected_feature_indices (输出控制) string-array → HTupleSequence[str]HTupleHtuple (string) (string) (HString) (char*)
The selected feature set, contains
indices.
ScoreScoreScoreScorescorescore (输出控制) real-array → HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
The achieved score using two-fold cross-validation.
示例(HDevelop)
* Find out which of the two features distinguishes two Classes
NameFeature1 := 'Good Feature'
NameFeature2 := 'Bad Feature'
LengthFeature1 := 3
LengthFeature2 := 2
* Create training data
create_class_train_data (LengthFeature1+LengthFeature2,\
ClassTrainDataHandle)
* Define the features which are in the training data
set_feature_lengths_class_train_data (ClassTrainDataHandle, [LengthFeature1,\
LengthFeature2], [NameFeature1, NameFeature2])
* Add training data
* |Feat1| |Feat2|
add_sample_class_train_data (ClassTrainDataHandle, 'row', [1,1,1, 2,1 ], 0)
add_sample_class_train_data (ClassTrainDataHandle, 'row', [2,2,2, 2,1 ], 1)
add_sample_class_train_data (ClassTrainDataHandle, 'row', [1,1,1, 3,4 ], 0)
add_sample_class_train_data (ClassTrainDataHandle, 'row', [2,2,2, 3,4 ], 1)
* Add more data
* ...
* Select the better feature with a SVM
select_feature_set_svm (ClassTrainDataHandle, 'greedy', [], [], SVMHandle,\
SelectedFeatureSVM, Score)
* Use the classifier
* ...
结果
如果参数有效,算子 select_feature_set_svmselect_feature_set_svmSelectFeatureSetSvmSelectFeatureSetSvmSelectFeatureSetSvmselect_feature_set_svm 返回值 2 ( H_MSG_TRUE )。如有必要,则抛出异常。
可能的前趋
create_class_train_datacreate_class_train_dataCreateClassTrainDataCreateClassTrainDataCreateClassTrainDatacreate_class_train_data,
add_sample_class_train_dataadd_sample_class_train_dataAddSampleClassTrainDataAddSampleClassTrainDataAddSampleClassTrainDataadd_sample_class_train_data,
set_feature_lengths_class_train_dataset_feature_lengths_class_train_dataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataSetFeatureLengthsClassTrainDataset_feature_lengths_class_train_data
可能的后继
classify_class_svmclassify_class_svmClassifyClassSvmClassifyClassSvmClassifyClassSvmclassify_class_svm
替代
select_feature_set_mlpselect_feature_set_mlpSelectFeatureSetMlpSelectFeatureSetMlpSelectFeatureSetMlpselect_feature_set_mlp,
select_feature_set_knnselect_feature_set_knnSelectFeatureSetKnnSelectFeatureSetKnnSelectFeatureSetKnnselect_feature_set_knn,
select_feature_set_gmmselect_feature_set_gmmSelectFeatureSetGmmSelectFeatureSetGmmSelectFeatureSetGmmselect_feature_set_gmm
另见
select_feature_set_trainf_svmselect_feature_set_trainf_svmSelectFeatureSetTrainfSvmSelectFeatureSetTrainfSvmSelectFeatureSetTrainfSvmselect_feature_set_trainf_svm,
gray_featuresgray_featuresGrayFeaturesGrayFeaturesGrayFeaturesgray_features,
region_featuresregion_featuresRegionFeaturesRegionFeaturesRegionFeaturesregion_features
模块
基础