create_class_train_data — 为分类器的训练数据创建句柄。
create_class_train_data( : : NumDim : ClassTrainDataHandle)
create_class_train_data creates a handle for training data
for classifiers. The handle is
returned in ClassTrainDataHandle.
The dimension of the feature vectors is specified
with NumDim. Only feature vectors of this length can be added
to the handle.
此算子返回一个句柄。请注意,即使该句柄被用作特定算子的输入参数,这些算子仍可能改变此句柄类型的实例状态。
NumDim (输入控制) number → (integer)
Number of dimensions of the feature vector.
默认值: 10
ClassTrainDataHandle (输出控制) class_train_data → (handle)
训练数据的句柄。
* Find out which of the two features distinguishes two Classes NameFeature1 := 'Good Feature' NameFeature2 := 'Bad Feature' LengthFeature1 := 3 LengthFeature2 := 2 * Create training data create_class_train_data (LengthFeature1+LengthFeature2,\ ClassTrainDataHandle) * Define the features which are in the training data set_feature_lengths_class_train_data (ClassTrainDataHandle, [LengthFeature1,\ LengthFeature2], [NameFeature1, NameFeature2]) * Add training data * |Feat1| |Feat2| add_sample_class_train_data (ClassTrainDataHandle, 'row', [1,1,1, 2,1 ], 0) add_sample_class_train_data (ClassTrainDataHandle, 'row', [2,2,2, 2,1 ], 1) add_sample_class_train_data (ClassTrainDataHandle, 'row', [1,1,1, 3,4 ], 0) add_sample_class_train_data (ClassTrainDataHandle, 'row', [2,2,2, 3,4 ], 1) add_sample_class_train_data (ClassTrainDataHandle, 'row', [0,0,1, 5,6 ], 0) add_sample_class_train_data (ClassTrainDataHandle, 'row', [2,3,2, 5,6 ], 1) add_sample_class_train_data (ClassTrainDataHandle, 'row', [0,0,1, 5,6 ], 0) add_sample_class_train_data (ClassTrainDataHandle, 'row', [2,3,2, 5,6 ], 1) add_sample_class_train_data (ClassTrainDataHandle, 'row', [0,0,1, 5,6 ], 0) add_sample_class_train_data (ClassTrainDataHandle, 'row', [2,3,2, 5,6 ], 1) * Add more data * ... * Select the better feature with the classifier of your choice select_feature_set_knn (ClassTrainDataHandle, 'greedy', [], [], KNNHandle,\ SelectedFeature, Score) select_feature_set_svm (ClassTrainDataHandle, 'greedy', [], [], SVMHandle,\ SelectedFeature, Score) select_feature_set_mlp (ClassTrainDataHandle, 'greedy', [], [], MLPHandle,\ SelectedFeature, Score) select_feature_set_gmm (ClassTrainDataHandle, 'greedy', [], [], GMMHandle,\ SelectedFeature, Score) * Use the classifier * ...
如果参数有效,算子 create_class_train_data 返回值 2 ( H_MSG_TRUE )。如有必要,则抛出异常。
add_sample_class_knn,
train_class_knn
create_class_svm,
create_class_mlp
select_feature_set_knn,
read_class_knn
基础