sobel_dirsobel_dirSobelDirSobelDirsobel_dir (算子)

名称

sobel_dirsobel_dirSobelDirSobelDirsobel_dir — 使用索贝尔(Sobel)算子检测边缘(振幅和方向)。

签名

sobel_dir(Image : EdgeAmplitude, EdgeDirection : FilterType, Size : )

Herror sobel_dir(const Hobject Image, Hobject* EdgeAmplitude, Hobject* EdgeDirection, const char* FilterType, const Hlong Size)

Herror T_sobel_dir(const Hobject Image, Hobject* EdgeAmplitude, Hobject* EdgeDirection, const Htuple FilterType, const Htuple Size)

void SobelDir(const HObject& Image, HObject* EdgeAmplitude, HObject* EdgeDirection, const HTuple& FilterType, const HTuple& Size)

HImage HImage::SobelDir(HImage* EdgeDirection, const HString& FilterType, const HTuple& Size) const

HImage HImage::SobelDir(HImage* EdgeDirection, const HString& FilterType, Hlong Size) const

HImage HImage::SobelDir(HImage* EdgeDirection, const char* FilterType, Hlong Size) const

HImage HImage::SobelDir(HImage* EdgeDirection, const wchar_t* FilterType, Hlong Size) const   ( Windows only)

static void HOperatorSet.SobelDir(HObject image, out HObject edgeAmplitude, out HObject edgeDirection, HTuple filterType, HTuple size)

HImage HImage.SobelDir(out HImage edgeDirection, string filterType, HTuple size)

HImage HImage.SobelDir(out HImage edgeDirection, string filterType, int size)

def sobel_dir(image: HObject, filter_type: str, size: MaybeSequence[int]) -> Tuple[HObject, HObject]

描述

sobel_dirsobel_dirSobelDirSobelDirSobelDirsobel_dir calculates first derivative of an image and is used as an edge detector. The filter is based on the following filter masks: A = 1 2 1 0 0 0 -1 -2 -1 B = 1 0 -1 2 0 -2 1 0 -1 These masks are used differently, according to the selected filter type. (In the following, a and b denote the results of convolving an image with A and B for one particular pixel.)

For a Sobel operator with size 3x3, the corresponding filters A and B are applied directly, while for larger filter sizes the input image is first smoothed using a Gaussian filter (see gauss_imagegauss_imageGaussImageGaussImageGaussImagegauss_image) or a binomial filter (see binomial_filterbinomial_filterBinomialFilterBinomialFilterBinomialFilterbinomial_filter) of size SizeSizeSizeSizesizesize-2. The Gaussian filter is selected for the above values of FilterTypeFilterTypeFilterTypeFilterTypefilterTypefilter_type. Here, SizeSizeSizeSizesizesize = 5, 7, 9, 11, or 13 must be used. The binomial filter is selected by appending '_binomial'"_binomial""_binomial""_binomial""_binomial""_binomial" to the above values of FilterTypeFilterTypeFilterTypeFilterTypefilterTypefilter_type. Here, SizeSizeSizeSizesizesize can be selected between 5 and 39. Furthermore, it is possible to select different amounts of smoothing the column and row direction by passing two values in SizeSizeSizeSizesizesize. Here, the first value of SizeSizeSizeSizesizesize corresponds to the mask width (smoothing in the column direction), while the second value corresponds to the mask height (smoothing in the row direction) of the binomial filter. The binomial filter can only be used for images of type byte, uint2 and real. Since smoothing reduces the edge amplitudes, in this case the edge amplitudes are multiplied by a factor of 2 to prevent information loss. Therefore,
sobel_dir(I,Amp,Dir,FilterType,S)sobel_dir(I,Amp,Dir,FilterType,S)SobelDir(I,Amp,Dir,FilterType,S)SobelDir(I,Amp,Dir,FilterType,S)SobelDir(I,Amp,Dir,FilterType,S)sobel_dir(I,Amp,Dir,FilterType,S)
for SizeSizeSizeSizesizesize > 3 is conceptually equivalent to
scale_image(I,F,2,0)scale_image(I,F,2,0)ScaleImage(I,F,2,0)ScaleImage(I,F,2,0)ScaleImage(I,F,2,0)scale_image(I,F,2,0)
gauss_image(F,G,S-2)gauss_image(F,G,S-2)GaussImage(F,G,S-2)GaussImage(F,G,S-2)GaussImage(F,G,S-2)gauss_image(F,G,S-2)
sobel_dir(G,Amp,Dir,FilterType,3)sobel_dir(G,Amp,Dir,FilterType,3)SobelDir(G,Amp,Dir,FilterType,3)SobelDir(G,Amp,Dir,FilterType,3)SobelDir(G,Amp,Dir,FilterType,3)sobel_dir(G,Amp,Dir,FilterType,3)
or to
scale_image(I,F,2,0)scale_image(I,F,2,0)ScaleImage(I,F,2,0)ScaleImage(I,F,2,0)ScaleImage(I,F,2,0)scale_image(I,F,2,0)
binomial_filter(F,G,S[0]-2,S[1]-2)binomial_filter(F,G,S[0]-2,S[1]-2)BinomialFilter(F,G,S[0]-2,S[1]-2)BinomialFilter(F,G,S[0]-2,S[1]-2)BinomialFilter(F,G,S[0]-2,S[1]-2)binomial_filter(F,G,S[0]-2,S[1]-2)
sobel_dir(G,Amp,Dir,FilterType,3)sobel_dir(G,Amp,Dir,FilterType,3)SobelDir(G,Amp,Dir,FilterType,3)SobelDir(G,Amp,Dir,FilterType,3)SobelDir(G,Amp,Dir,FilterType,3)sobel_dir(G,Amp,Dir,FilterType,3).
The edge directions are returned in EdgeDirectionEdgeDirectionEdgeDirectionEdgeDirectionedgeDirectionedge_direction, and are stored in 2-degree steps, i.e., an edge direction of x degrees in mathematically positive sense and with respect to the horizontal axis is stored as x / 2 in the edge direction image. Furthermore, the direction of the change of intensity is taken into account. Let denote the image gradient. Then the following edge directions are returned as :
intensity increase edge direction [deg]
from bottom to top 0 / + 0
from lower right to upper left - / + ]0,90[
from right to left - / 0 90
from upper right to lower left - / - ]90,180[
from top to bottom 0 / - 180
from upper left to lower right + / - ]180,270[
from left to right + / 0 270
from lower left to upper right + / + ]270,360[.

Points with edge amplitude 0 are assigned the edge direction 255 (undefined direction).

sobel_ampsobel_ampSobelAmpSobelAmpSobelAmpsobel_amp 可在 OpenCL 设备上执行。 Note that when using gaussian filtering for SizeSizeSizeSizesizesize > 3, the results can vary from the CPU implementation.

注意

请注意,若使用域缩减后的图像作为输入,滤波器算子可能会返回意外结果。请参阅 滤波器 一章

执行信息

参数

ImageImageImageImageimageimage (输入对象)  (multichannel-)image(-array) objectHImageHObjectHImageHobject (byte / int2 / uint2 / real)

输入图像。

EdgeAmplitudeEdgeAmplitudeEdgeAmplitudeEdgeAmplitudeedgeAmplitudeedge_amplitude (输出对象)  (multichannel-)image(-array) objectHImageHObjectHImageHobject * (byte / int2 / uint2 / real)

Edge amplitude (gradient magnitude) image.

EdgeDirectionEdgeDirectionEdgeDirectionEdgeDirectionedgeDirectionedge_direction (输出对象)  (multichannel-)image(-array) objectHImageHObjectHImageHobject * (direction)

Edge direction image.

FilterTypeFilterTypeFilterTypeFilterTypefilterTypefilter_type (输入控制)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Filter type.

默认值: 'sum_abs' "sum_abs" "sum_abs" "sum_abs" "sum_abs" "sum_abs"

值列表: 'sum_abs'"sum_abs""sum_abs""sum_abs""sum_abs""sum_abs", 'sum_abs_binomial'"sum_abs_binomial""sum_abs_binomial""sum_abs_binomial""sum_abs_binomial""sum_abs_binomial", 'sum_sqrt'"sum_sqrt""sum_sqrt""sum_sqrt""sum_sqrt""sum_sqrt", 'sum_sqrt_binomial'"sum_sqrt_binomial""sum_sqrt_binomial""sum_sqrt_binomial""sum_sqrt_binomial""sum_sqrt_binomial"

List of values (for compute devices): 'sum_abs'"sum_abs""sum_abs""sum_abs""sum_abs""sum_abs", 'sum_sqrt'"sum_sqrt""sum_sqrt""sum_sqrt""sum_sqrt""sum_sqrt", 'sum_abs_binomial'"sum_abs_binomial""sum_abs_binomial""sum_abs_binomial""sum_abs_binomial""sum_abs_binomial", 'sum_sqrt_binomial'"sum_sqrt_binomial""sum_sqrt_binomial""sum_sqrt_binomial""sum_sqrt_binomial""sum_sqrt_binomial"

SizeSizeSizeSizesizesize (输入控制)  integer(-array) HTupleMaybeSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Size of filter mask.

默认值: 3

值列表: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39

示例(HDevelop)

read_image(Image,'fabrik')
sobel_dir(Image,Amp,Dir,'sum_abs',3)
threshold(Amp,Edg,128,255)

示例(C)

read_image(&Image,"fabrik");
sobel_dir(Image,&Amp,&Dir,"sum_abs",3);
threshold(Amp,&Edg,128.0,255.0);

示例(HDevelop)

read_image(Image,'fabrik')
sobel_dir(Image,Amp,Dir,'sum_abs',3)
threshold(Amp,Edg,128,255)

示例(HDevelop)

read_image(Image,'fabrik')
sobel_dir(Image,Amp,Dir,'sum_abs',3)
threshold(Amp,Edg,128,255)

示例(HDevelop)

read_image(Image,'fabrik')
sobel_dir(Image,Amp,Dir,'sum_abs',3)
threshold(Amp,Edg,128,255)

结果

sobel_dirsobel_dirSobelDirSobelDirSobelDirsobel_dir 在所有参数正确时返回 2 ( H_MSG_TRUE )。 如果输入为空则可设置行为通过 set_system('no_object_result',<Result>)set_system("no_object_result",<Result>)SetSystem("no_object_result",<Result>)SetSystem("no_object_result",<Result>)SetSystem("no_object_result",<Result>)set_system("no_object_result",<Result>)。如有必要,则抛出异常。

可能的前趋

binomial_filterbinomial_filterBinomialFilterBinomialFilterBinomialFilterbinomial_filter, gauss_filtergauss_filterGaussFilterGaussFilterGaussFiltergauss_filter, mean_imagemean_imageMeanImageMeanImageMeanImagemean_image, anisotropic_diffusionanisotropic_diffusionAnisotropicDiffusionAnisotropicDiffusionAnisotropicDiffusionanisotropic_diffusion, sigma_imagesigma_imageSigmaImageSigmaImageSigmaImagesigma_image

可能的后继

nonmax_suppression_dirnonmax_suppression_dirNonmaxSuppressionDirNonmaxSuppressionDirNonmaxSuppressionDirnonmax_suppression_dir, hysteresis_thresholdhysteresis_thresholdHysteresisThresholdHysteresisThresholdHysteresisThresholdhysteresis_threshold, thresholdthresholdThresholdThresholdThresholdthreshold

替代

edges_imageedges_imageEdgesImageEdgesImageEdgesImageedges_image, frei_dirfrei_dirFreiDirFreiDirFreiDirfrei_dir, kirsch_dirkirsch_dirKirschDirKirschDirKirschDirkirsch_dir, prewitt_dirprewitt_dirPrewittDirPrewittDirPrewittDirprewitt_dir, robinson_dirrobinson_dirRobinsonDirRobinsonDirRobinsonDirrobinson_dir

另见

robertsrobertsRobertsRobertsRobertsroberts, laplacelaplaceLaplaceLaplaceLaplacelaplace, highpass_imagehighpass_imageHighpassImageHighpassImageHighpassImagehighpass_image, bandpass_imagebandpass_imageBandpassImageBandpassImageBandpassImagebandpass_image

模块

基础