read_samples_class_svmT_read_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm (算子)
名称
read_samples_class_svmT_read_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm — 从文件中读取支持向量机的训练数据。
签名
描述
read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm reads training samples from the file
given by FileNameFileNameFileNameFileNamefileNamefile_name and adds them to the training samples
that have already been added to the support vector machine (SVM)
given by SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle. The SVM must be created with
create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm before calling
read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm. As described with
train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmTrainClassSvmtrain_class_svm and write_samples_class_svmwrite_samples_class_svmWriteSamplesClassSvmWriteSamplesClassSvmWriteSamplesClassSvmwrite_samples_class_svm, the
operators read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm,
add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm, and write_samples_class_svmwrite_samples_class_svmWriteSamplesClassSvmWriteSamplesClassSvmWriteSamplesClassSvmwrite_samples_class_svm
can be used to build up a extensive set of training samples, and
hence to improve the performance of the SVM by retraining the SVM
with extended data sets.
It should be noted that the training samples must have the correct
dimensionality. The feature vectors and target vectors stored in
FileNameFileNameFileNameFileNamefileNamefile_name must have the lengths NumFeaturesNumFeaturesNumFeaturesNumFeaturesnumFeaturesnum_features and
NumClassesNumClassesNumClassesNumClassesnumClassesnum_classes that were specified with
create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm。The target is stored in vector form for
compatibility reason with the MLP (see
read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp). If the dimensions are incorrect an
error message is returned.
执行信息
- 多线程类型:可重入(与非独占算子并行运行)。
- 多线程作用域:全局(可从任何线程调用)。
- 未采用并行化处理。
此算子修改后续输入参数的状态:
在执行此算子时,若该参数值需在多个线程间使用,则必须对其访问进行同步。
参数
SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle (输入控制,状态被修改) class_svm → HClassSvm, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
SVM 句柄。
FileNameFileNameFileNameFileNamefileNamefile_name (输入控制) filename.read → HTuplestrHTupleHtuple (string) (string) (HString) (char*)
File name.
结果
如果参数有效,算子 read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm 返回值 2 ( H_MSG_TRUE )。如有必要,则抛出异常。
可能的前趋
create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm
可能的后继
train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmTrainClassSvmtrain_class_svm
替代
add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm
另见
write_samples_class_svmwrite_samples_class_svmWriteSamplesClassSvmWriteSamplesClassSvmWriteSamplesClassSvmwrite_samples_class_svm,
clear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm
模块
基础