clear_samples_class_svmT_clear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm (算子)

名称

clear_samples_class_svmT_clear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm — 清除支持向量机的训练数据。

签名

clear_samples_class_svm( : : SVMHandle : )

Herror T_clear_samples_class_svm(const Htuple SVMHandle)

void ClearSamplesClassSvm(const HTuple& SVMHandle)

static void HClassSvm::ClearSamplesClassSvm(const HClassSvmArray& SVMHandle)

void HClassSvm::ClearSamplesClassSvm() const

static void HOperatorSet.ClearSamplesClassSvm(HTuple SVMHandle)

static void HClassSvm.ClearSamplesClassSvm(HClassSvm[] SVMHandle)

void HClassSvm.ClearSamplesClassSvm()

def clear_samples_class_svm(svmhandle: MaybeSequence[HHandle]) -> None

描述

clear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm clears all training samples that have been added to the support vector machine (SVM) SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle with add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm or read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svmclear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm should only be used if the SVM is trained in the same process that uses the SVM for classification with classify_class_svmclassify_class_svmClassifyClassSvmClassifyClassSvmClassifyClassSvmclassify_class_svm。In this case, the memory required for the training samples can be freed with clear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm, and hence memory can be saved. In the normal usage, in which the SVM is trained offline and written to a file with write_class_svmwrite_class_svmWriteClassSvmWriteClassSvmWriteClassSvmwrite_class_svm, it is typically unnecessary to call clear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm because write_class_svmwrite_class_svmWriteClassSvmWriteClassSvmWriteClassSvmwrite_class_svm does not save the training samples, and hence the online process, which reads the SVM with read_class_svmread_class_svmReadClassSvmReadClassSvmReadClassSvmread_class_svm, requires no memory for the training samples.

执行信息

此算子修改后续输入参数的状态:

在执行此算子时,若该参数值需在多个线程间使用,则必须对其访问进行同步。

参数

SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle (输入控制,状态被修改)  class_svm(-array) HClassSvm, HTupleMaybeSequence[HHandle]HTupleHtuple (handle) (IntPtr) (HHandle) (handle)

SVM 句柄。

结果

如果参数有效,算子 clear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm 返回值 2 ( H_MSG_TRUE )。如有必要,则抛出异常。

可能的前趋

train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmTrainClassSvmtrain_class_svm, write_samples_class_svmwrite_samples_class_svmWriteSamplesClassSvmWriteSamplesClassSvmWriteSamplesClassSvmwrite_samples_class_svm

另见

create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm, clear_class_svmclear_class_svmClearClassSvmClearClassSvmClearClassSvmclear_class_svm, add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm, read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm

模块

基础