clear_samples_class_svmT_clear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm (算子)
名称
clear_samples_class_svmT_clear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm — 清除支持向量机的训练数据。
签名
Herror T_clear_samples_class_svm(const Htuple SVMHandle)
def clear_samples_class_svm(svmhandle: MaybeSequence[HHandle]) -> None
描述
clear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm clears all training samples that
have been added to the support vector machine (SVM)
SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle with add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm or
read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm。clear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm
should only be used if the SVM is trained in the same process that
uses the SVM for classification with classify_class_svmclassify_class_svmClassifyClassSvmClassifyClassSvmClassifyClassSvmclassify_class_svm。In
this case, the memory required for the training samples can be freed
with clear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm, and hence memory can be saved.
In the normal usage, in which the SVM is trained offline and written
to a file with write_class_svmwrite_class_svmWriteClassSvmWriteClassSvmWriteClassSvmwrite_class_svm, it is typically unnecessary
to call clear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm because
write_class_svmwrite_class_svmWriteClassSvmWriteClassSvmWriteClassSvmwrite_class_svm does not save the training samples, and
hence the online process, which reads the SVM with
read_class_svmread_class_svmReadClassSvmReadClassSvmReadClassSvmread_class_svm, requires no memory for the training
samples.
执行信息
- 多线程类型:可重入(与非独占算子并行运行)。
- 多线程作用域:全局(可从任何线程调用)。
- 未采用并行化处理。
此算子修改后续输入参数的状态:
在执行此算子时,若该参数值需在多个线程间使用,则必须对其访问进行同步。
参数
SVMHandleSVMHandleSVMHandleSVMHandleSVMHandlesvmhandle (输入控制,状态被修改) class_svm(-array) → HClassSvm, HTupleMaybeSequence[HHandle]HTupleHtuple (handle) (IntPtr) (HHandle) (handle)
SVM 句柄。
结果
如果参数有效,算子 clear_samples_class_svmclear_samples_class_svmClearSamplesClassSvmClearSamplesClassSvmClearSamplesClassSvmclear_samples_class_svm 返回值 2 ( H_MSG_TRUE )。如有必要,则抛出异常。
可能的前趋
train_class_svmtrain_class_svmTrainClassSvmTrainClassSvmTrainClassSvmtrain_class_svm,
write_samples_class_svmwrite_samples_class_svmWriteSamplesClassSvmWriteSamplesClassSvmWriteSamplesClassSvmwrite_samples_class_svm
另见
create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm,
clear_class_svmclear_class_svmClearClassSvmClearClassSvmClearClassSvmclear_class_svm,
add_sample_class_svmadd_sample_class_svmAddSampleClassSvmAddSampleClassSvmAddSampleClassSvmadd_sample_class_svm,
read_samples_class_svmread_samples_class_svmReadSamplesClassSvmReadSamplesClassSvmReadSamplesClassSvmread_samples_class_svm
模块
基础