proj_match_points_ransac_guidedT_proj_match_points_ransac_guidedProjMatchPointsRansacGuidedProjMatchPointsRansacGuidedproj_match_points_ransac_guided (算子)
名称
proj_match_points_ransac_guidedT_proj_match_points_ransac_guidedProjMatchPointsRansacGuidedProjMatchPointsRansacGuidedproj_match_points_ransac_guided — 通过基于投影变换矩阵的已知近似值找到点之间的对应关系,计算两幅图像之间的投影变换矩阵。
签名
proj_match_points_ransac_guided(Image1, Image2 : : Rows1, Cols1, Rows2, Cols2, GrayMatchMethod, MaskSize, HomMat2DGuide, DistanceTolerance, MatchThreshold, EstimationMethod, DistanceThreshold, RandSeed : HomMat2D, Points1, Points2)
Herror T_proj_match_points_ransac_guided(const Hobject Image1, const Hobject Image2, const Htuple Rows1, const Htuple Cols1, const Htuple Rows2, const Htuple Cols2, const Htuple GrayMatchMethod, const Htuple MaskSize, const Htuple HomMat2DGuide, const Htuple DistanceTolerance, const Htuple MatchThreshold, const Htuple EstimationMethod, const Htuple DistanceThreshold, const Htuple RandSeed, Htuple* HomMat2D, Htuple* Points1, Htuple* Points2)
void ProjMatchPointsRansacGuided(const HObject& Image1, const HObject& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HTuple& GrayMatchMethod, const HTuple& MaskSize, const HTuple& HomMat2DGuide, const HTuple& DistanceTolerance, const HTuple& MatchThreshold, const HTuple& EstimationMethod, const HTuple& DistanceThreshold, const HTuple& RandSeed, HTuple* HomMat2D, HTuple* Points1, HTuple* Points2)
HHomMat2D HImage::ProjMatchPointsRansacGuided(const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HString& GrayMatchMethod, Hlong MaskSize, const HHomMat2D& HomMat2DGuide, double DistanceTolerance, const HTuple& MatchThreshold, const HString& EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points1, HTuple* Points2) const
HHomMat2D HImage::ProjMatchPointsRansacGuided(const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HString& GrayMatchMethod, Hlong MaskSize, const HHomMat2D& HomMat2DGuide, double DistanceTolerance, Hlong MatchThreshold, const HString& EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points1, HTuple* Points2) const
HHomMat2D HImage::ProjMatchPointsRansacGuided(const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const char* GrayMatchMethod, Hlong MaskSize, const HHomMat2D& HomMat2DGuide, double DistanceTolerance, Hlong MatchThreshold, const char* EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points1, HTuple* Points2) const
HHomMat2D HImage::ProjMatchPointsRansacGuided(const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const wchar_t* GrayMatchMethod, Hlong MaskSize, const HHomMat2D& HomMat2DGuide, double DistanceTolerance, Hlong MatchThreshold, const wchar_t* EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points1, HTuple* Points2) const
(
Windows only)
HHomMat2D HHomMat2D::ProjMatchPointsRansacGuided(const HImage& Image1, const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HString& GrayMatchMethod, Hlong MaskSize, double DistanceTolerance, const HTuple& MatchThreshold, const HString& EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points1, HTuple* Points2) const
HHomMat2D HHomMat2D::ProjMatchPointsRansacGuided(const HImage& Image1, const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HString& GrayMatchMethod, Hlong MaskSize, double DistanceTolerance, Hlong MatchThreshold, const HString& EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points1, HTuple* Points2) const
HHomMat2D HHomMat2D::ProjMatchPointsRansacGuided(const HImage& Image1, const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const char* GrayMatchMethod, Hlong MaskSize, double DistanceTolerance, Hlong MatchThreshold, const char* EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points1, HTuple* Points2) const
HHomMat2D HHomMat2D::ProjMatchPointsRansacGuided(const HImage& Image1, const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const wchar_t* GrayMatchMethod, Hlong MaskSize, double DistanceTolerance, Hlong MatchThreshold, const wchar_t* EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points1, HTuple* Points2) const
(
Windows only)
static void HOperatorSet.ProjMatchPointsRansacGuided(HObject image1, HObject image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, HTuple grayMatchMethod, HTuple maskSize, HTuple homMat2DGuide, HTuple distanceTolerance, HTuple matchThreshold, HTuple estimationMethod, HTuple distanceThreshold, HTuple randSeed, out HTuple homMat2D, out HTuple points1, out HTuple points2)
HHomMat2D HImage.ProjMatchPointsRansacGuided(HImage image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, string grayMatchMethod, int maskSize, HHomMat2D homMat2DGuide, double distanceTolerance, HTuple matchThreshold, string estimationMethod, double distanceThreshold, int randSeed, out HTuple points1, out HTuple points2)
HHomMat2D HImage.ProjMatchPointsRansacGuided(HImage image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, string grayMatchMethod, int maskSize, HHomMat2D homMat2DGuide, double distanceTolerance, int matchThreshold, string estimationMethod, double distanceThreshold, int randSeed, out HTuple points1, out HTuple points2)
HHomMat2D HHomMat2D.ProjMatchPointsRansacGuided(HImage image1, HImage image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, string grayMatchMethod, int maskSize, double distanceTolerance, HTuple matchThreshold, string estimationMethod, double distanceThreshold, int randSeed, out HTuple points1, out HTuple points2)
HHomMat2D HHomMat2D.ProjMatchPointsRansacGuided(HImage image1, HImage image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, string grayMatchMethod, int maskSize, double distanceTolerance, int matchThreshold, string estimationMethod, double distanceThreshold, int randSeed, out HTuple points1, out HTuple points2)
def proj_match_points_ransac_guided(image_1: HObject, image_2: HObject, rows_1: Sequence[Union[float, int]], cols_1: Sequence[Union[float, int]], rows_2: Sequence[Union[float, int]], cols_2: Sequence[Union[float, int]], gray_match_method: str, mask_size: int, hom_mat_2dguide: Sequence[float], distance_tolerance: float, match_threshold: Union[int, float], estimation_method: str, distance_threshold: float, rand_seed: int) -> Tuple[Sequence[float], Sequence[int], Sequence[int]]
描述
Given a set of coordinates of characteristic points
(Cols1Cols1Cols1Cols1cols1cols_1,Rows1Rows1Rows1Rows1rows1rows_1) and
(Cols2Cols2Cols2Cols2cols2cols_2,Rows2Rows2Rows2Rows2rows2rows_2) in both input images
Image1Image1Image1Image1image1image_1 and Image2Image2Image2Image2image2image_2, and given a known approximation
HomMat2DGuideHomMat2DGuideHomMat2DGuideHomMat2DGuidehomMat2DGuidehom_mat_2dguide for the transformation matrix between
Image1Image1Image1Image1image1image_1 and Image2Image2Image2Image2image2image_2,
proj_match_points_ransac_guidedproj_match_points_ransac_guidedProjMatchPointsRansacGuidedProjMatchPointsRansacGuidedProjMatchPointsRansacGuidedproj_match_points_ransac_guided automatically determines
corresponding points and the homogeneous projective transformation
matrix HomMat2DHomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d that best transforms the corresponding
points from the different images into each other. The
characteristic points can, for example, be extracted with
points_foerstnerpoints_foerstnerPointsFoerstnerPointsFoerstnerPointsFoerstnerpoints_foerstner or points_harrispoints_harrisPointsHarrisPointsHarrisPointsHarrispoints_harris。The
approximation HomMat2DGuideHomMat2DGuideHomMat2DGuideHomMat2DGuidehomMat2DGuidehom_mat_2dguide can, for example, be calculated
with proj_match_points_ransacproj_match_points_ransacProjMatchPointsRansacProjMatchPointsRansacProjMatchPointsRansacproj_match_points_ransac on lower resolution versions
of Image1Image1Image1Image1image1image_1 and Image2Image2Image2Image2image2image_2。
The transformation is determined in two steps: First, gray value
correlations of mask windows around the input points in the first
and the second image are determined and an initial matching between
them is generated using the similarity of the windows in both
images. The size of the mask windows is MaskSizeMaskSizeMaskSizeMaskSizemaskSizemask_size x MaskSizeMaskSizeMaskSizeMaskSizemaskSizemask_size. Three
metrics for the correlation can be selected. If
GrayMatchMethodGrayMatchMethodGrayMatchMethodGrayMatchMethodgrayMatchMethodgray_match_method has the value 'ssd'"ssd""ssd""ssd""ssd""ssd", the sum of
the squared gray value differences is used, 'sad'"sad""sad""sad""sad""sad" means the
sum of absolute differences, and 'ncc'"ncc""ncc""ncc""ncc""ncc" is the normalized
cross correlation. For details please refer to
binocular_disparitybinocular_disparityBinocularDisparityBinocularDisparityBinocularDisparitybinocular_disparity。The metric is minimized ('ssd'"ssd""ssd""ssd""ssd""ssd",
'sad'"sad""sad""sad""sad""sad") or maximized ('ncc'"ncc""ncc""ncc""ncc""ncc") over all possible
point pairs. A thus found matching is only accepted if the value of
the metric is below the value of MatchThresholdMatchThresholdMatchThresholdMatchThresholdmatchThresholdmatch_threshold
('ssd'"ssd""ssd""ssd""ssd""ssd", 'sad'"sad""sad""sad""sad""sad") or above that value
('ncc'"ncc""ncc""ncc""ncc""ncc").
To increase the algorithm's performance, the search area for the
matching operations is limited based on the approximate transformation
HomMat2DGuideHomMat2DGuideHomMat2DGuideHomMat2DGuidehomMat2DGuidehom_mat_2dguide. Only points within a distance of
DistanceToleranceDistanceToleranceDistanceToleranceDistanceTolerancedistanceTolerancedistance_tolerance around the transformed a point in
Image2Image2Image2Image2image2image_2 of a point in Image1Image1Image1Image1image1image_1 via
HomMat2DGuideHomMat2DGuideHomMat2DGuideHomMat2DGuidehomMat2DGuidehom_mat_2dguide are considered for the matching.
Once the initial matching is complete, a randomized search algorithm
(RANSAC) is used to determine the transformation matrix
HomMat2DHomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d. It tries to find the matrix that is consistent
with a maximum number of correspondences. For a point to be
accepted, its distance from the coordinates predicted by the
transformation must not exceed the threshold
DistanceThresholdDistanceThresholdDistanceThresholdDistanceThresholddistanceThresholddistance_threshold。
Once a choice has been made, the matrix is further optimized using
all consistent points. For this optimization, the
EstimationMethodEstimationMethodEstimationMethodEstimationMethodestimationMethodestimation_method can be chosen to either be the slow but
mathematically optimal 'gold_standard'"gold_standard""gold_standard""gold_standard""gold_standard""gold_standard" method or the faster
'normalized_dlt'"normalized_dlt""normalized_dlt""normalized_dlt""normalized_dlt""normalized_dlt". Here, the algorithms of
vector_to_proj_hom_mat2dvector_to_proj_hom_mat2dVectorToProjHomMat2dVectorToProjHomMat2dVectorToProjHomMat2dvector_to_proj_hom_mat2d are used.
Point pairs that still violate the consistency condition for the
final transformation are dropped, the matched points are returned as
control values. Points1Points1Points1Points1points1points_1 contains the indices of the
matched input points from the first image, Points2Points2Points2Points2points2points_2 contains
the indices of the corresponding points in the second image.
The parameter RandSeedRandSeedRandSeedRandSeedrandSeedrand_seed can be used to control the
randomized nature of the RANSAC algorithm, and hence to obtain
reproducible results. If RandSeedRandSeedRandSeedRandSeedrandSeedrand_seed is set to a positive
number, the operator yields the same result on every call with the
same parameters because the internally used random number generator
is initialized with the seed value. If RandSeedRandSeedRandSeedRandSeedrandSeedrand_seed =
0, the random number generator is initialized with the
current time. Hence, the results may not be reproducible in this
case.
执行信息
- 多线程类型:可重入(与非独占算子并行运行)。
- 多线程作用域:全局(可从任何线程调用)。
- 未采用并行化处理。
参数
Image1Image1Image1Image1image1image_1 (输入对象) singlechannelimage → objectHImageHObjectHImageHobject (byte / uint2)
输入图像 1。
Image2Image2Image2Image2image2image_2 (输入对象) singlechannelimage → objectHImageHObjectHImageHobject (byte / uint2)
输入图像 2。
Rows1Rows1Rows1Rows1rows1rows_1 (输入控制) point.x-array → HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Row coordinates of characteristic points
in image 1.
Cols1Cols1Cols1Cols1cols1cols_1 (输入控制) point.y-array → HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Column coordinates of characteristic points
in image 1.
Rows2Rows2Rows2Rows2rows2rows_2 (输入控制) point.x-array → HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Row coordinates of characteristic points
in image 2.
Cols2Cols2Cols2Cols2cols2cols_2 (输入控制) point.y-array → HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Column coordinates of characteristic points
in image 2.
GrayMatchMethodGrayMatchMethodGrayMatchMethodGrayMatchMethodgrayMatchMethodgray_match_method (输入控制) string → HTuplestrHTupleHtuple (string) (string) (HString) (char*)
Gray value comparison metric.
默认值:
'ssd'
"ssd"
"ssd"
"ssd"
"ssd"
"ssd"
值列表:
'ncc'"ncc""ncc""ncc""ncc""ncc", 'sad'"sad""sad""sad""sad""sad", 'ssd'"ssd""ssd""ssd""ssd""ssd"
MaskSizeMaskSizeMaskSizeMaskSizemaskSizemask_size (输入控制) integer → HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Size of gray value masks.
默认值:
10
值范围:
MaskSize
MaskSize
MaskSize
MaskSize
maskSize
mask_size
≤
90
HomMat2DGuideHomMat2DGuideHomMat2DGuideHomMat2DGuidehomMat2DGuidehom_mat_2dguide (输入控制) hom_mat2d → HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Approximation of the Homogeneous projective
transformation matrix between the two images.
DistanceToleranceDistanceToleranceDistanceToleranceDistanceTolerancedistanceTolerancedistance_tolerance (输入控制) real → HTuplefloatHTupleHtuple (real) (double) (double) (double)
Tolerance for the matching search window.
默认值:
20.0
建议值:
0.2, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0, 20.0, 50.0
MatchThresholdMatchThresholdMatchThresholdMatchThresholdmatchThresholdmatch_threshold (输入控制) number → HTupleUnion[int, float]HTupleHtuple (integer / real) (int / long / double) (Hlong / double) (Hlong / double)
Threshold for gray value matching.
默认值:
10
建议值:
10, 20, 50, 100, 0.9, 0.7
EstimationMethodEstimationMethodEstimationMethodEstimationMethodestimationMethodestimation_method (输入控制) string → HTuplestrHTupleHtuple (string) (string) (HString) (char*)
Transformation matrix estimation algorithm.
默认值:
'normalized_dlt'
"normalized_dlt"
"normalized_dlt"
"normalized_dlt"
"normalized_dlt"
"normalized_dlt"
值列表:
'gold_standard'"gold_standard""gold_standard""gold_standard""gold_standard""gold_standard", 'normalized_dlt'"normalized_dlt""normalized_dlt""normalized_dlt""normalized_dlt""normalized_dlt"
DistanceThresholdDistanceThresholdDistanceThresholdDistanceThresholddistanceThresholddistance_threshold (输入控制) real → HTuplefloatHTupleHtuple (real) (double) (double) (double)
Threshold for transformation consistency check.
默认值:
0.2
RandSeedRandSeedRandSeedRandSeedrandSeedrand_seed (输入控制) integer → HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Seed for the random number generator.
默认值:
0
HomMat2DHomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d (输出控制) hom_mat2d → HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)
Homogeneous projective transformation matrix.
Points1Points1Points1Points1points1points_1 (输出控制) integer-array → HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Indices of matched input points in image 1.
Points2Points2Points2Points2points2points_2 (输出控制) integer-array → HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)
Indices of matched input points in image 2.
示例(HDevelop)
zoom_image_factor (Image1, Image1Zoomed, 0.5, 0.5, 'constant')
zoom_image_factor (Image2, Image2Zoomed, 0.5, 0.5, 'constant')
points_foerstner (Image1Zoomed, 1, 2, 3, 200, 0.3, 'gauss', 'false', \
Rows1, Cols1, _, _, _, _, _, _, _, _)
points_foerstner (Image2Zoomed, 1, 2, 3, 200, 0.3, 'gauss', 'false', \
Rows2, Cols2, _, _, _, _, _, _, _, _)
get_image_pointer1 (Image1Zoomed, Pointer, Type, Width, Height)
proj_match_points_ransac (Image1Zoomed, Image2Zoomed, Rows1, Cols1, \
Rows2, Cols2, 'ncc', 10, 0, 0, \
Height, Width, 0, 0.5, 'gold_standard', \
5, 0, HomMat2D, Points1, Points2)
hom_mat2d_scale_local (HomMat2D, 0.5, 0.5, HomMat2DGuide)
hom_mat2d_scale (HomMat2DGuide, 2, 2, 0, 0, HomMat2DGuide)
points_foerstner (Image1, 1, 2, 3, 200, 0.3, 'gauss', 'false', \
Rows1, Cols1, _, _, _, _, _, _, _, _)
points_foerstner (Image2, 1, 2, 3, 200, 0.3, 'gauss', 'false', \
Rows2, Cols2, _, _, _, _, _, _, _, _)
proj_match_points_ransac_guided (Image1, Image2, Rows1, Cols1, \
Rows2, Cols2, 'ncc', 10, \
HomMat2DGuide, 40, 0.5, \
'gold_standard', 10, 0, HomMat2D, \
Points1, Points2)
可能的前趋
points_foerstnerpoints_foerstnerPointsFoerstnerPointsFoerstnerPointsFoerstnerpoints_foerstner,
points_harrispoints_harrisPointsHarrisPointsHarrisPointsHarrispoints_harris
可能的后继
projective_trans_imageprojective_trans_imageProjectiveTransImageProjectiveTransImageProjectiveTransImageprojective_trans_image,
projective_trans_image_sizeprojective_trans_image_sizeProjectiveTransImageSizeProjectiveTransImageSizeProjectiveTransImageSizeprojective_trans_image_size,
projective_trans_regionprojective_trans_regionProjectiveTransRegionProjectiveTransRegionProjectiveTransRegionprojective_trans_region,
projective_trans_contour_xldprojective_trans_contour_xldProjectiveTransContourXldProjectiveTransContourXldProjectiveTransContourXldprojective_trans_contour_xld,
projective_trans_point_2dprojective_trans_point_2dProjectiveTransPoint2dProjectiveTransPoint2dProjectiveTransPoint2dprojective_trans_point_2d,
projective_trans_pixelprojective_trans_pixelProjectiveTransPixelProjectiveTransPixelProjectiveTransPixelprojective_trans_pixel
替代
hom_vector_to_proj_hom_mat2dhom_vector_to_proj_hom_mat2dHomVectorToProjHomMat2dHomVectorToProjHomMat2dHomVectorToProjHomMat2dhom_vector_to_proj_hom_mat2d,
vector_to_proj_hom_mat2dvector_to_proj_hom_mat2dVectorToProjHomMat2dVectorToProjHomMat2dVectorToProjHomMat2dvector_to_proj_hom_mat2d
另见
proj_match_points_ransacproj_match_points_ransacProjMatchPointsRansacProjMatchPointsRansacProjMatchPointsRansacproj_match_points_ransac
参考文献
Richard Hartley, Andrew Zisserman: “Multiple View Geometry in
Computer Vision”; Cambridge University Press, Cambridge; 2000.
Olivier Faugeras, Quang-Tuan Luong: “The Geometry of Multiple
Images: The Laws That Govern the Formation of Multiple Images of a
Scene and Some of Their Applications”; MIT Press, Cambridge, MA;
2001.
模块
匹配