proj_match_points_ransacT_proj_match_points_ransacProjMatchPointsRansacProjMatchPointsRansacproj_match_points_ransac (算子)

名称

proj_match_points_ransacT_proj_match_points_ransacProjMatchPointsRansacProjMatchPointsRansacproj_match_points_ransac — 通过寻找点之间的对应关系来计算两幅图像之间的投影变换矩阵。

签名

proj_match_points_ransac(Image1, Image2 : : Rows1, Cols1, Rows2, Cols2, GrayMatchMethod, MaskSize, RowMove, ColMove, RowTolerance, ColTolerance, Rotation, MatchThreshold, EstimationMethod, DistanceThreshold, RandSeed : HomMat2D, Points1, Points2)

Herror T_proj_match_points_ransac(const Hobject Image1, const Hobject Image2, const Htuple Rows1, const Htuple Cols1, const Htuple Rows2, const Htuple Cols2, const Htuple GrayMatchMethod, const Htuple MaskSize, const Htuple RowMove, const Htuple ColMove, const Htuple RowTolerance, const Htuple ColTolerance, const Htuple Rotation, const Htuple MatchThreshold, const Htuple EstimationMethod, const Htuple DistanceThreshold, const Htuple RandSeed, Htuple* HomMat2D, Htuple* Points1, Htuple* Points2)

void ProjMatchPointsRansac(const HObject& Image1, const HObject& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HTuple& GrayMatchMethod, const HTuple& MaskSize, const HTuple& RowMove, const HTuple& ColMove, const HTuple& RowTolerance, const HTuple& ColTolerance, const HTuple& Rotation, const HTuple& MatchThreshold, const HTuple& EstimationMethod, const HTuple& DistanceThreshold, const HTuple& RandSeed, HTuple* HomMat2D, HTuple* Points1, HTuple* Points2)

HHomMat2D HImage::ProjMatchPointsRansac(const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HString& GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, const HTuple& Rotation, const HTuple& MatchThreshold, const HString& EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points1, HTuple* Points2) const

HHomMat2D HImage::ProjMatchPointsRansac(const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HString& GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, double Rotation, Hlong MatchThreshold, const HString& EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points1, HTuple* Points2) const

HHomMat2D HImage::ProjMatchPointsRansac(const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const char* GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, double Rotation, Hlong MatchThreshold, const char* EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points1, HTuple* Points2) const

HHomMat2D HImage::ProjMatchPointsRansac(const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const wchar_t* GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, double Rotation, Hlong MatchThreshold, const wchar_t* EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points1, HTuple* Points2) const   ( Windows only)

HTuple HHomMat2D::ProjMatchPointsRansac(const HImage& Image1, const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HString& GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, const HTuple& Rotation, const HTuple& MatchThreshold, const HString& EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points2)

HTuple HHomMat2D::ProjMatchPointsRansac(const HImage& Image1, const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const HString& GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, double Rotation, Hlong MatchThreshold, const HString& EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points2)

HTuple HHomMat2D::ProjMatchPointsRansac(const HImage& Image1, const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const char* GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, double Rotation, Hlong MatchThreshold, const char* EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points2)

HTuple HHomMat2D::ProjMatchPointsRansac(const HImage& Image1, const HImage& Image2, const HTuple& Rows1, const HTuple& Cols1, const HTuple& Rows2, const HTuple& Cols2, const wchar_t* GrayMatchMethod, Hlong MaskSize, Hlong RowMove, Hlong ColMove, Hlong RowTolerance, Hlong ColTolerance, double Rotation, Hlong MatchThreshold, const wchar_t* EstimationMethod, double DistanceThreshold, Hlong RandSeed, HTuple* Points2)   ( Windows only)

static void HOperatorSet.ProjMatchPointsRansac(HObject image1, HObject image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, HTuple grayMatchMethod, HTuple maskSize, HTuple rowMove, HTuple colMove, HTuple rowTolerance, HTuple colTolerance, HTuple rotation, HTuple matchThreshold, HTuple estimationMethod, HTuple distanceThreshold, HTuple randSeed, out HTuple homMat2D, out HTuple points1, out HTuple points2)

HHomMat2D HImage.ProjMatchPointsRansac(HImage image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, string grayMatchMethod, int maskSize, int rowMove, int colMove, int rowTolerance, int colTolerance, HTuple rotation, HTuple matchThreshold, string estimationMethod, double distanceThreshold, int randSeed, out HTuple points1, out HTuple points2)

HHomMat2D HImage.ProjMatchPointsRansac(HImage image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, string grayMatchMethod, int maskSize, int rowMove, int colMove, int rowTolerance, int colTolerance, double rotation, int matchThreshold, string estimationMethod, double distanceThreshold, int randSeed, out HTuple points1, out HTuple points2)

HTuple HHomMat2D.ProjMatchPointsRansac(HImage image1, HImage image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, string grayMatchMethod, int maskSize, int rowMove, int colMove, int rowTolerance, int colTolerance, HTuple rotation, HTuple matchThreshold, string estimationMethod, double distanceThreshold, int randSeed, out HTuple points2)

HTuple HHomMat2D.ProjMatchPointsRansac(HImage image1, HImage image2, HTuple rows1, HTuple cols1, HTuple rows2, HTuple cols2, string grayMatchMethod, int maskSize, int rowMove, int colMove, int rowTolerance, int colTolerance, double rotation, int matchThreshold, string estimationMethod, double distanceThreshold, int randSeed, out HTuple points2)

def proj_match_points_ransac(image_1: HObject, image_2: HObject, rows_1: Sequence[Union[float, int]], cols_1: Sequence[Union[float, int]], rows_2: Sequence[Union[float, int]], cols_2: Sequence[Union[float, int]], gray_match_method: str, mask_size: int, row_move: int, col_move: int, row_tolerance: int, col_tolerance: int, rotation: MaybeSequence[float], match_threshold: Union[int, float], estimation_method: str, distance_threshold: float, rand_seed: int) -> Tuple[Sequence[float], Sequence[int], Sequence[int]]

描述

Given a set of coordinates of characteristic points (Cols1Cols1Cols1Cols1cols1cols_1,Rows1Rows1Rows1Rows1rows1rows_1) and (Cols2Cols2Cols2Cols2cols2cols_2,Rows2Rows2Rows2Rows2rows2rows_2) in both input images Image1Image1Image1Image1image1image_1 and Image2Image2Image2Image2image2image_2, proj_match_points_ransacproj_match_points_ransacProjMatchPointsRansacProjMatchPointsRansacProjMatchPointsRansacproj_match_points_ransac automatically determines corresponding points and the homogeneous projective transformation matrix HomMat2DHomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d that best transforms the corresponding points from the different images into each other. The characteristic points can, for example, be extracted with points_foerstnerpoints_foerstnerPointsFoerstnerPointsFoerstnerPointsFoerstnerpoints_foerstner or points_harrispoints_harrisPointsHarrisPointsHarrisPointsHarrispoints_harris

The transformation is determined in two steps: First, gray value correlations of mask windows around the input points in the first and the second image are determined and an initial matching between them is generated using the similarity of the windows in both images.

The size of the mask windows is MaskSizeMaskSizeMaskSizeMaskSizemaskSizemask_size x MaskSizeMaskSizeMaskSizeMaskSizemaskSizemask_size. Three metrics for the correlation can be selected. If GrayMatchMethodGrayMatchMethodGrayMatchMethodGrayMatchMethodgrayMatchMethodgray_match_method has the value 'ssd'"ssd""ssd""ssd""ssd""ssd", the sum of the squared gray value differences is used, 'sad'"sad""sad""sad""sad""sad" means the sum of absolute differences, and 'ncc'"ncc""ncc""ncc""ncc""ncc" is the normalized cross correlation. For details please refer to binocular_disparitybinocular_disparityBinocularDisparityBinocularDisparityBinocularDisparitybinocular_disparity。The metric is minimized ('ssd'"ssd""ssd""ssd""ssd""ssd", 'sad'"sad""sad""sad""sad""sad") or maximized ('ncc'"ncc""ncc""ncc""ncc""ncc") over all possible point pairs. A thus found matching is only accepted if the value of the metric is below the value of MatchThresholdMatchThresholdMatchThresholdMatchThresholdmatchThresholdmatch_threshold ('ssd'"ssd""ssd""ssd""ssd""ssd", 'sad'"sad""sad""sad""sad""sad") or above that value ('ncc'"ncc""ncc""ncc""ncc""ncc").

To increase the algorithm's performance, the search area for the matching operations can be limited. Only points within a window of points are considered. The offset of the center of the search window in the second image with respect to the position of the current point in the first image is given by RowMoveRowMoveRowMoveRowMoverowMoverow_move and ColMoveColMoveColMoveColMovecolMovecol_move

If the transformation contains a rotation, i.e., if the first image is rotated with respect to the second image, the parameter RotationRotationRotationRotationrotationrotation may contain an estimate for the rotation angle or an angle interval in radians. A good guess will increase the quality of the gray value matching. If the actual rotation differs too much from the specified estimate the matching will typically fail. The larger the given interval, the slower the operator is since the entire algorithm is run for all relevant angles within the interval.

Once the initial matching is complete, a randomized search algorithm (RANSAC) is used to determine the transformation matrix HomMat2DHomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d. It tries to find the matrix that is consistent with a maximum number of correspondences. For a point to be accepted, its distance from the coordinates predicted by the transformation must not exceed the threshold DistanceThresholdDistanceThresholdDistanceThresholdDistanceThresholddistanceThresholddistance_threshold

Once a choice has been made, the matrix is further optimized using all consistent points. For this optimization, the EstimationMethodEstimationMethodEstimationMethodEstimationMethodestimationMethodestimation_method can be chosen to either be the slow but mathematically optimal 'gold_standard'"gold_standard""gold_standard""gold_standard""gold_standard""gold_standard" method or the faster 'normalized_dlt'"normalized_dlt""normalized_dlt""normalized_dlt""normalized_dlt""normalized_dlt". Here, the algorithms of vector_to_proj_hom_mat2dvector_to_proj_hom_mat2dVectorToProjHomMat2dVectorToProjHomMat2dVectorToProjHomMat2dvector_to_proj_hom_mat2d are used.

Point pairs that still violate the consistency condition for the final transformation are dropped, the matched points are returned as control values. Points1Points1Points1Points1points1points_1 contains the indices of the matched input points from the first image, Points2Points2Points2Points2points2points_2 contains the indices of the corresponding points in the second image.

The parameter RandSeedRandSeedRandSeedRandSeedrandSeedrand_seed can be used to control the randomized nature of the RANSAC algorithm, and hence to obtain reproducible results. If RandSeedRandSeedRandSeedRandSeedrandSeedrand_seed is set to a positive number, the operator yields the same result on every call with the same parameters because the internally used random number generator is initialized with the seed value. If RandSeedRandSeedRandSeedRandSeedrandSeedrand_seed = 0, the random number generator is initialized with the current time. Hence, the results may not be reproducible in this case.

执行信息

参数

Image1Image1Image1Image1image1image_1 (输入对象)  singlechannelimage objectHImageHObjectHImageHobject (byte / uint2)

输入图像 1。

Image2Image2Image2Image2image2image_2 (输入对象)  singlechannelimage objectHImageHObjectHImageHobject (byte / uint2)

输入图像 2。

Rows1Rows1Rows1Rows1rows1rows_1 (输入控制)  point.x-array HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Row coordinates of characteristic points in image 1.

Cols1Cols1Cols1Cols1cols1cols_1 (输入控制)  point.y-array HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Column coordinates of characteristic points in image 1.

Rows2Rows2Rows2Rows2rows2rows_2 (输入控制)  point.x-array HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Row coordinates of characteristic points in image 2.

Cols2Cols2Cols2Cols2cols2cols_2 (输入控制)  point.y-array HTupleSequence[Union[float, int]]HTupleHtuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)

Column coordinates of characteristic points in image 2.

GrayMatchMethodGrayMatchMethodGrayMatchMethodGrayMatchMethodgrayMatchMethodgray_match_method (输入控制)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Gray value comparison metric.

默认值: 'ssd' "ssd" "ssd" "ssd" "ssd" "ssd"

值列表: 'ncc'"ncc""ncc""ncc""ncc""ncc", 'sad'"sad""sad""sad""sad""sad", 'ssd'"ssd""ssd""ssd""ssd""ssd"

MaskSizeMaskSizeMaskSizeMaskSizemaskSizemask_size (输入控制)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Size of gray value masks.

默认值: 10

值范围: MaskSize MaskSize MaskSize MaskSize maskSize mask_size ≤ 90

RowMoveRowMoveRowMoveRowMoverowMoverow_move (输入控制)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Average row coordinate shift.

默认值: 0

ColMoveColMoveColMoveColMovecolMovecol_move (输入控制)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Average column coordinate shift.

默认值: 0

RowToleranceRowToleranceRowToleranceRowTolerancerowTolerancerow_tolerance (输入控制)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Half height of matching search window.

默认值: 256

ColToleranceColToleranceColToleranceColTolerancecolTolerancecol_tolerance (输入控制)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Half width of matching search window.

默认值: 256

RotationRotationRotationRotationrotationrotation (输入控制)  real(-array) HTupleMaybeSequence[float]HTupleHtuple (real) (double) (double) (double)

Range of rotation angles.

默认值: 0.0

建议值: 0.0, 0.7854, 1.571, 3.142

MatchThresholdMatchThresholdMatchThresholdMatchThresholdmatchThresholdmatch_threshold (输入控制)  number HTupleUnion[int, float]HTupleHtuple (integer / real) (int / long / double) (Hlong / double) (Hlong / double)

Threshold for gray value matching.

默认值: 10

建议值: 10, 20, 50, 100, 0.9, 0.7

EstimationMethodEstimationMethodEstimationMethodEstimationMethodestimationMethodestimation_method (输入控制)  string HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Transformation matrix estimation algorithm.

默认值: 'normalized_dlt' "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt"

值列表: 'gold_standard'"gold_standard""gold_standard""gold_standard""gold_standard""gold_standard", 'normalized_dlt'"normalized_dlt""normalized_dlt""normalized_dlt""normalized_dlt""normalized_dlt"

DistanceThresholdDistanceThresholdDistanceThresholdDistanceThresholddistanceThresholddistance_threshold (输入控制)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

Threshold for transformation consistency check.

默认值: 0.2

RandSeedRandSeedRandSeedRandSeedrandSeedrand_seed (输入控制)  integer HTupleintHTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Seed for the random number generator.

默认值: 0

HomMat2DHomMat2DHomMat2DHomMat2DhomMat2Dhom_mat_2d (输出控制)  hom_mat2d HHomMat2D, HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Homogeneous projective transformation matrix.

Points1Points1Points1Points1points1points_1 (输出控制)  integer-array HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Indices of matched input points in image 1.

Points2Points2Points2Points2points2points_2 (输出控制)  integer-array HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Indices of matched input points in image 2.

可能的前趋

points_foerstnerpoints_foerstnerPointsFoerstnerPointsFoerstnerPointsFoerstnerpoints_foerstner, points_harrispoints_harrisPointsHarrisPointsHarrisPointsHarrispoints_harris

可能的后继

projective_trans_imageprojective_trans_imageProjectiveTransImageProjectiveTransImageProjectiveTransImageprojective_trans_image, projective_trans_image_sizeprojective_trans_image_sizeProjectiveTransImageSizeProjectiveTransImageSizeProjectiveTransImageSizeprojective_trans_image_size, projective_trans_regionprojective_trans_regionProjectiveTransRegionProjectiveTransRegionProjectiveTransRegionprojective_trans_region, projective_trans_contour_xldprojective_trans_contour_xldProjectiveTransContourXldProjectiveTransContourXldProjectiveTransContourXldprojective_trans_contour_xld, projective_trans_point_2dprojective_trans_point_2dProjectiveTransPoint2dProjectiveTransPoint2dProjectiveTransPoint2dprojective_trans_point_2d, projective_trans_pixelprojective_trans_pixelProjectiveTransPixelProjectiveTransPixelProjectiveTransPixelprojective_trans_pixel

替代

hom_vector_to_proj_hom_mat2dhom_vector_to_proj_hom_mat2dHomVectorToProjHomMat2dHomVectorToProjHomMat2dHomVectorToProjHomMat2dhom_vector_to_proj_hom_mat2d, vector_to_proj_hom_mat2dvector_to_proj_hom_mat2dVectorToProjHomMat2dVectorToProjHomMat2dVectorToProjHomMat2dvector_to_proj_hom_mat2d

另见

proj_match_points_ransac_guidedproj_match_points_ransac_guidedProjMatchPointsRansacGuidedProjMatchPointsRansacGuidedProjMatchPointsRansacGuidedproj_match_points_ransac_guided

参考文献

Richard Hartley, Andrew Zisserman: “Multiple View Geometry in Computer Vision”; Cambridge University Press, Cambridge; 2000.
Olivier Faugeras, Quang-Tuan Luong: “The Geometry of Multiple Images: The Laws That Govern the Formation of Multiple Images of a Scene and Some of Their Applications”; MIT Press, Cambridge, MA; 2001.

模块

匹配