match_essential_matrix_ransac T_match_essential_matrix_ransac MatchEssentialMatrixRansac MatchEssentialMatrixRansac match_essential_matrix_ransac (算子)
名称
match_essential_matrix_ransac T_match_essential_matrix_ransac MatchEssentialMatrixRansac MatchEssentialMatrixRansac match_essential_matrix_ransac — 通过自动查找图像点之间的对应关系来计算一对立体图像的基本矩阵。Ransac:randomized search随机搜索算法。
签名
match_essential_matrix_ransac (Image1 , Image2 : : Rows1 , Cols1 , Rows2 , Cols2 , CamMat1 , CamMat2 , GrayMatchMethod , MaskSize , RowMove , ColMove , RowTolerance , ColTolerance , Rotation , MatchThreshold , EstimationMethod , DistanceThreshold , RandSeed : EMatrix , CovEMat , Error , Points1 , Points2 )
Herror T_match_essential_matrix_ransac (const Hobject Image1 , const Hobject Image2 , const Htuple Rows1 , const Htuple Cols1 , const Htuple Rows2 , const Htuple Cols2 , const Htuple CamMat1 , const Htuple CamMat2 , const Htuple GrayMatchMethod , const Htuple MaskSize , const Htuple RowMove , const Htuple ColMove , const Htuple RowTolerance , const Htuple ColTolerance , const Htuple Rotation , const Htuple MatchThreshold , const Htuple EstimationMethod , const Htuple DistanceThreshold , const Htuple RandSeed , Htuple* EMatrix , Htuple* CovEMat , Htuple* Error , Htuple* Points1 , Htuple* Points2 )
void MatchEssentialMatrixRansac (const HObject& Image1 , const HObject& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HTuple& CamMat1 , const HTuple& CamMat2 , const HTuple& GrayMatchMethod , const HTuple& MaskSize , const HTuple& RowMove , const HTuple& ColMove , const HTuple& RowTolerance , const HTuple& ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HTuple& EstimationMethod , const HTuple& DistanceThreshold , const HTuple& RandSeed , HTuple* EMatrix , HTuple* CovEMat , HTuple* Error , HTuple* Points1 , HTuple* Points2 )
HHomMat2D HImage ::MatchEssentialMatrixRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HHomMat2D& CamMat1 , const HHomMat2D& CamMat2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HString& EstimationMethod , const HTuple& DistanceThreshold , Hlong RandSeed , HTuple* CovEMat , HTuple* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HImage ::MatchEssentialMatrixRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HHomMat2D& CamMat1 , const HHomMat2D& CamMat2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const HString& EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovEMat , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HImage ::MatchEssentialMatrixRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HHomMat2D& CamMat1 , const HHomMat2D& CamMat2 , const char* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const char* EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovEMat , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HImage ::MatchEssentialMatrixRansac (const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HHomMat2D& CamMat1 , const HHomMat2D& CamMat2 , const wchar_t* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const wchar_t* EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovEMat , double* Error , HTuple* Points1 , HTuple* Points2 ) const
(
Windows only)
HHomMat2D HHomMat2D ::MatchEssentialMatrixRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HHomMat2D& CamMat2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , const HTuple& Rotation , const HTuple& MatchThreshold , const HString& EstimationMethod , const HTuple& DistanceThreshold , Hlong RandSeed , HTuple* CovEMat , HTuple* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HHomMat2D ::MatchEssentialMatrixRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HHomMat2D& CamMat2 , const HString& GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const HString& EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovEMat , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HHomMat2D ::MatchEssentialMatrixRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HHomMat2D& CamMat2 , const char* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const char* EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovEMat , double* Error , HTuple* Points1 , HTuple* Points2 ) const
HHomMat2D HHomMat2D ::MatchEssentialMatrixRansac (const HImage& Image1 , const HImage& Image2 , const HTuple& Rows1 , const HTuple& Cols1 , const HTuple& Rows2 , const HTuple& Cols2 , const HHomMat2D& CamMat2 , const wchar_t* GrayMatchMethod , Hlong MaskSize , Hlong RowMove , Hlong ColMove , Hlong RowTolerance , Hlong ColTolerance , double Rotation , Hlong MatchThreshold , const wchar_t* EstimationMethod , double DistanceThreshold , Hlong RandSeed , HTuple* CovEMat , double* Error , HTuple* Points1 , HTuple* Points2 ) const
(
Windows only)
static void HOperatorSet .MatchEssentialMatrixRansac (HObject image1 , HObject image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HTuple camMat1 , HTuple camMat2 , HTuple grayMatchMethod , HTuple maskSize , HTuple rowMove , HTuple colMove , HTuple rowTolerance , HTuple colTolerance , HTuple rotation , HTuple matchThreshold , HTuple estimationMethod , HTuple distanceThreshold , HTuple randSeed , out HTuple EMatrix , out HTuple covEMat , out HTuple error , out HTuple points1 , out HTuple points2 )
HHomMat2D HImage .MatchEssentialMatrixRansac (HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HHomMat2D camMat1 , HHomMat2D camMat2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , HTuple rotation , HTuple matchThreshold , string estimationMethod , HTuple distanceThreshold , int randSeed , out HTuple covEMat , out HTuple error , out HTuple points1 , out HTuple points2 )
HHomMat2D HImage .MatchEssentialMatrixRansac (HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HHomMat2D camMat1 , HHomMat2D camMat2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , double rotation , int matchThreshold , string estimationMethod , double distanceThreshold , int randSeed , out HTuple covEMat , out double error , out HTuple points1 , out HTuple points2 )
HHomMat2D HHomMat2D .MatchEssentialMatrixRansac (HImage image1 , HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HHomMat2D camMat2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , HTuple rotation , HTuple matchThreshold , string estimationMethod , HTuple distanceThreshold , int randSeed , out HTuple covEMat , out HTuple error , out HTuple points1 , out HTuple points2 )
HHomMat2D HHomMat2D .MatchEssentialMatrixRansac (HImage image1 , HImage image2 , HTuple rows1 , HTuple cols1 , HTuple rows2 , HTuple cols2 , HHomMat2D camMat2 , string grayMatchMethod , int maskSize , int rowMove , int colMove , int rowTolerance , int colTolerance , double rotation , int matchThreshold , string estimationMethod , double distanceThreshold , int randSeed , out HTuple covEMat , out double error , out HTuple points1 , out HTuple points2 )
def match_essential_matrix_ransac (image_1 : HObject, image_2 : HObject, rows_1 : Sequence[Union[float, int]], cols_1 : Sequence[Union[float, int]], rows_2 : Sequence[Union[float, int]], cols_2 : Sequence[Union[float, int]], cam_mat_1 : Sequence[Union[float, int]], cam_mat_2 : Sequence[Union[float, int]], gray_match_method : str, mask_size : int, row_move : int, col_move : int, row_tolerance : int, col_tolerance : int, rotation : MaybeSequence[Union[float, int]], match_threshold : Union[int, float], estimation_method : str, distance_threshold : Union[float, int], rand_seed : int) -> Tuple[Sequence[float], Sequence[float], Sequence[float], Sequence[int], Sequence[int]]
def match_essential_matrix_ransac_s (image_1 : HObject, image_2 : HObject, rows_1 : Sequence[Union[float, int]], cols_1 : Sequence[Union[float, int]], rows_2 : Sequence[Union[float, int]], cols_2 : Sequence[Union[float, int]], cam_mat_1 : Sequence[Union[float, int]], cam_mat_2 : Sequence[Union[float, int]], gray_match_method : str, mask_size : int, row_move : int, col_move : int, row_tolerance : int, col_tolerance : int, rotation : MaybeSequence[Union[float, int]], match_threshold : Union[int, float], estimation_method : str, distance_threshold : Union[float, int], rand_seed : int) -> Tuple[Sequence[float], Sequence[float], float, Sequence[int], Sequence[int]]
描述
Given a set of coordinates of characteristic points
(Rows1 Rows1 Rows1 Rows1 rows1 rows_1 ,Cols1 Cols1 Cols1 Cols1 cols1 cols_1 ) and
(Rows2 Rows2 Rows2 Rows2 rows2 rows_2 ,Cols2 Cols2 Cols2 Cols2 cols2 cols_2 ) in the stereo images
Image1 Image1 Image1 Image1 image1 image_1 and Image2 Image2 Image2 Image2 image2 image_2 along with known internal camera
parameters, specified by the camera matrices CamMat1 CamMat1 CamMat1 CamMat1 camMat1 cam_mat_1 and
CamMat2 CamMat2 CamMat2 CamMat2 camMat2 cam_mat_2 , match_essential_matrix_ransac match_essential_matrix_ransac MatchEssentialMatrixRansac MatchEssentialMatrixRansac MatchEssentialMatrixRansac match_essential_matrix_ransac
automatically determines the geometry of the stereo setup and finds
the correspondences between the characteristic points. The geometry
of the stereo setup is represented by the essential matrix
EMatrix EMatrix EMatrix EMatrix EMatrix ematrix and all corresponding points have to fulfill the
epipolar constraint.
算子 match_essential_matrix_ransac match_essential_matrix_ransac MatchEssentialMatrixRansac MatchEssentialMatrixRansac MatchEssentialMatrixRansac match_essential_matrix_ransac is designed to deal with
a linear camera model.
The internal camera parameters are passed by the arguments
CamMat1 CamMat1 CamMat1 CamMat1 camMat1 cam_mat_1 and CamMat2 CamMat2 CamMat2 CamMat2 camMat2 cam_mat_2 , which are
3x3 upper triangular matrices describing an affine
transformation. The relation between a vector (X,Y,1), representing the
direction from the camera to the viewed 3D space point and its (projective)
2D image coordinates (col,row,1) is:
Note the column/row ordering in the point coordinates which has to
be compliant with the x/y notation of the camera coordinate system.
The focal length is denoted by f,
are
scaling factors, s describes a skew factor and
indicates the principal point.
Mainly, these are the elements known from the camera parameters as used for
example in calibrate_cameras calibrate_cameras CalibrateCameras CalibrateCameras CalibrateCameras calibrate_cameras 。Alternatively, the elements
of the camera matrix can be described in a different way, see e.g.
stationary_camera_self_calibration stationary_camera_self_calibration StationaryCameraSelfCalibration StationaryCameraSelfCalibration StationaryCameraSelfCalibration stationary_camera_self_calibration 。Multiplied by the inverse of the camera matrices the direction
vectors in 3D space are obtained from the (projective) image
coordinates. For
known camera matrices the epipolar constraint is given by:
The matching process is based on characteristic points, which can be
extracted with point operators like points_foerstner points_foerstner PointsFoerstner PointsFoerstner PointsFoerstner points_foerstner or
points_harris points_harris PointsHarris PointsHarris PointsHarris points_harris 。The matching itself is carried out in two steps: first, gray value
correlations of mask windows around the input points in the first
and the second image are determined and an initial matching between
them is generated using the similarity of the windows in both images.
Then, the RANSAC algorithm is applied to find the essential matrix
that maximizes the number of correspondences under the epipolar constraint.
The size of the mask windows is MaskSize MaskSize MaskSize MaskSize maskSize mask_size x MaskSize MaskSize MaskSize MaskSize maskSize mask_size . Three
metrics for the correlation can be selected. If
GrayMatchMethod GrayMatchMethod GrayMatchMethod GrayMatchMethod grayMatchMethod gray_match_method has the value 'ssd' "ssd" "ssd" "ssd" "ssd" "ssd" , the sum of
the squared gray value differences is used, 'sad' "sad" "sad" "sad" "sad" "sad" means the
sum of absolute differences, and 'ncc' "ncc" "ncc" "ncc" "ncc" "ncc" is the normalized
cross correlation. For details please refer to
binocular_disparity binocular_disparity BinocularDisparity BinocularDisparity BinocularDisparity binocular_disparity 。The metric is minimized ('ssd' "ssd" "ssd" "ssd" "ssd" "ssd" ,
'sad' "sad" "sad" "sad" "sad" "sad" ) or maximized ('ncc' "ncc" "ncc" "ncc" "ncc" "ncc" ) over all possible
point pairs. A thus found matching is only accepted if the value of
the metric is below the value of MatchThreshold MatchThreshold MatchThreshold MatchThreshold matchThreshold match_threshold
('ssd' "ssd" "ssd" "ssd" "ssd" "ssd" , 'sad' "sad" "sad" "sad" "sad" "sad" ) or above that value
('ncc' "ncc" "ncc" "ncc" "ncc" "ncc" ).
To increase the speed of the algorithm, the search area for the
matching operations can be limited. Only points within a window of
points are considered. The offset of the
center of the search window in the second image with respect to the
position of the current point in the first image is given by
RowMove RowMove RowMove RowMove rowMove row_move and ColMove ColMove ColMove ColMove colMove col_move 。
If the second camera is
rotated around the optical axis with respect to the first camera
the parameter Rotation Rotation Rotation Rotation rotation rotation may contain an estimate for the
rotation angle or an angle interval in radians. A good guess will
increase the quality of the gray value matching. If the actual
rotation differs too much from the specified estimate the matching
will typically fail. In this case, an angle interval should be
specified, and Rotation Rotation Rotation Rotation rotation rotation is a tuple with two elements. The
larger the given interval the slower the operator is since the
RANSAC algorithm is run over all angle increments within the
interval.
After the initial matching is completed a randomized search algorithm
(RANSAC) is used to determine the essential matrix
EMatrix EMatrix EMatrix EMatrix EMatrix ematrix . It tries to find the essential matrix that is consistent
with a maximum number of correspondences.
For a point to be accepted, the distance to its corresponding epipolar line
must not exceed the threshold DistanceThreshold DistanceThreshold DistanceThreshold DistanceThreshold distanceThreshold distance_threshold 。
The parameter EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method decides whether the relative
orientation between the cameras is of a special type and which algorithm is
to be applied for its computation.
If EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method is either 'normalized_dlt' "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" or
'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" the relative orientation is arbitrary.
Choosing 'trans_normalized_dlt' "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" or 'trans_gold_standard' "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard"
means that the relative motion between the cameras is a pure translation.
The typical application for this special motion case is the
scenario of a single fixed camera looking onto a moving conveyor belt.
In order to get a unique solution in the correspondence problem the minimum
required number of corresponding points is six in the general case and three
in the special, translational case.
The essential matrix is computed by a linear algorithm if
'normalized_dlt' "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" or 'trans_normalized_dlt' "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" is chosen.
With 'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" or 'trans_gold_standard' "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard"
the algorithm gives a statistically optimal result, and returns the
covariance of the essential matrix CovEMat CovEMat CovEMat CovEMat covEMat cov_emat as well.
Here, 'normalized_dlt' "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" and 'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" stand for
direct-linear-transformation and gold-standard-algorithm respectively.
Note, that in general the found correspondences differ depending on the
deployed estimation method.
The value Error Error Error Error error error indicates the overall quality of the estimation
procedure and is the mean Euclidean distance in pixels between the
points and their corresponding epipolar lines.
Point pairs consistent with the mentioned constraints are considered to be
in correspondences. Points1 Points1 Points1 Points1 points1 points_1 contains the indices of the
matched input points from the first image and Points2 Points2 Points2 Points2 points2 points_2 contains
the indices of the corresponding points in the second image.
For the operator match_essential_matrix_ransac match_essential_matrix_ransac MatchEssentialMatrixRansac MatchEssentialMatrixRansac MatchEssentialMatrixRansac match_essential_matrix_ransac a special
configuration of scene points and cameras exists: if all 3D points lie in a
single plane and additionally are all closer to one of the two cameras then
the solution in the essential matrix is not unique but twofold.
As a consequence both solutions are computed and returned by the operator.
This means that the output parameters EMatrix EMatrix EMatrix EMatrix EMatrix ematrix , CovEMat CovEMat CovEMat CovEMat covEMat cov_emat
and Error Error Error Error error error are of double length and the values of the second
solution are simply concatenated behind the values of the first one.
The parameter RandSeed RandSeed RandSeed RandSeed randSeed rand_seed can be used to control the
randomized nature of the RANSAC algorithm, and hence to obtain
reproducible results. If RandSeed RandSeed RandSeed RandSeed randSeed rand_seed is set to a positive
number the operator yields the same result on every call with the
same parameters because the internally used random number generator
is initialized with the RandSeed RandSeed RandSeed RandSeed randSeed rand_seed . If RandSeed RandSeed RandSeed RandSeed randSeed rand_seed =
0 the random number generator is initialized with the
current time. In this case the results may not be reproducible.
执行信息
多线程类型:可重入(与非独占算子并行运行)。
多线程作用域:全局(可从任何线程调用)。
未采用并行化处理。
参数
Image1 Image1 Image1 Image1 image1 image_1 (输入对象) singlechannelimage → object HImage HObject HImage Hobject (byte / uint2)
输入图像 1。
Image2 Image2 Image2 Image2 image2 image_2 (输入对象) singlechannelimage → object HImage HObject HImage Hobject (byte / uint2)
输入图像 2。
Rows1 Rows1 Rows1 Rows1 rows1 rows_1 (输入控制) number-array → HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Row coordinates of characteristic points
in image 1.
限制:
length(Rows1) >= 6 || length(Rows1) >= 3
Cols1 Cols1 Cols1 Cols1 cols1 cols_1 (输入控制) number-array → HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Column coordinates of characteristic points
in image 1.
限制:
length(Cols1) == length(Rows1)
Rows2 Rows2 Rows2 Rows2 rows2 rows_2 (输入控制) number-array → HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Row coordinates of characteristic points
in image 2.
限制:
length(Rows2) >= 6 || length(Rows2) >= 3
Cols2 Cols2 Cols2 Cols2 cols2 cols_2 (输入控制) number-array → HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Column coordinates of characteristic points
in image 2.
限制:
length(Cols2) == length(Rows2)
CamMat1 CamMat1 CamMat1 CamMat1 camMat1 cam_mat_1 (输入控制) hom_mat2d → HHomMat2D , HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Camera matrix of the 1st camera.
CamMat2 CamMat2 CamMat2 CamMat2 camMat2 cam_mat_2 (输入控制) hom_mat2d → HHomMat2D , HTuple Sequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Camera matrix of the 2nd camera.
GrayMatchMethod GrayMatchMethod GrayMatchMethod GrayMatchMethod grayMatchMethod gray_match_method (输入控制) string → HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Gray value comparison metric.
默认值:
'ssd'
"ssd"
"ssd"
"ssd"
"ssd"
"ssd"
值列表:
'ncc' "ncc" "ncc" "ncc" "ncc" "ncc" , 'sad' "sad" "sad" "sad" "sad" "sad" , 'ssd' "ssd" "ssd" "ssd" "ssd" "ssd"
MaskSize MaskSize MaskSize MaskSize maskSize mask_size (输入控制) integer → HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Size of gray value masks.
默认值:
10
建议值:
3, 7, 15
值范围:
1
≤
MaskSize
MaskSize
MaskSize
MaskSize
maskSize
mask_size
RowMove RowMove RowMove RowMove rowMove row_move (输入控制) integer → HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Average row coordinate shift of corresponding points.
默认值:
0
值范围:
0
≤
RowMove
RowMove
RowMove
RowMove
rowMove
row_move
≤
200
ColMove ColMove ColMove ColMove colMove col_move (输入控制) integer → HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Average column coordinate shift of
corresponding points.
默认值:
0
值范围:
0
≤
ColMove
ColMove
ColMove
ColMove
colMove
col_move
≤
200
RowTolerance RowTolerance RowTolerance RowTolerance rowTolerance row_tolerance (输入控制) integer → HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Half height of matching search window.
默认值:
200
值范围:
1
≤
RowTolerance
RowTolerance
RowTolerance
RowTolerance
rowTolerance
row_tolerance
ColTolerance ColTolerance ColTolerance ColTolerance colTolerance col_tolerance (输入控制) integer → HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Half width of matching search window.
默认值:
200
值范围:
1
≤
ColTolerance
ColTolerance
ColTolerance
ColTolerance
colTolerance
col_tolerance
Rotation Rotation Rotation Rotation rotation rotation (输入控制) angle.rad(-array) → HTuple MaybeSequence[Union[float, int]] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Estimate of the relative orientation of the right image
with respect to the left image.
默认值:
0.0
建议值:
0.0, 0.1, -0.1, 0.7854, 1.571, 3.142
MatchThreshold MatchThreshold MatchThreshold MatchThreshold matchThreshold match_threshold (输入控制) number → HTuple Union[int, float] HTuple Htuple (integer / real) (int / long / double) (Hlong / double) (Hlong / double)
Threshold for gray value matching.
默认值:
10
建议值:
10, 20, 50, 100, 0.9, 0.7
EstimationMethod EstimationMethod EstimationMethod EstimationMethod estimationMethod estimation_method (输入控制) string → HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Algorithm for the computation of the
essential matrix and for special camera orientations.
默认值:
'normalized_dlt'
"normalized_dlt"
"normalized_dlt"
"normalized_dlt"
"normalized_dlt"
"normalized_dlt"
值列表:
'gold_standard' "gold_standard" "gold_standard" "gold_standard" "gold_standard" "gold_standard" , 'normalized_dlt' "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" "normalized_dlt" , 'trans_gold_standard' "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" "trans_gold_standard" , 'trans_normalized_dlt' "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt" "trans_normalized_dlt"
DistanceThreshold DistanceThreshold DistanceThreshold DistanceThreshold distanceThreshold distance_threshold (输入控制) number → HTuple Union[float, int] HTuple Htuple (real / integer) (double / int / long) (double / Hlong) (double / Hlong)
Maximal deviation of a point from its epipolar line.
默认值:
1
值范围:
0.5
≤
DistanceThreshold
DistanceThreshold
DistanceThreshold
DistanceThreshold
distanceThreshold
distance_threshold
≤
5
限制:
DistanceThreshold > 0
RandSeed RandSeed RandSeed RandSeed randSeed rand_seed (输入控制) integer → HTuple int HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Seed for the random number generator.
默认值:
0
EMatrix EMatrix EMatrix EMatrix EMatrix ematrix (输出控制) hom_mat2d → HHomMat2D , HTuple Sequence[float] HTuple Htuple (real) (double ) (double ) (double )
Computed essential matrix.
CovEMat CovEMat CovEMat CovEMat covEMat cov_emat (输出控制) real-array → HTuple Sequence[float] HTuple Htuple (real) (double ) (double ) (double )
9x9 covariance matrix of the
essential matrix.
Error Error Error Error error error (输出控制) real(-array) → HTuple Sequence[float] HTuple Htuple (real) (double ) (double ) (double )
Root-Mean-Square of the epipolar distance error.
Points1 Points1 Points1 Points1 points1 points_1 (输出控制) integer-array → HTuple Sequence[int] HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Indices of matched input points in image 1.
Points2 Points2 Points2 Points2 points2 points_2 (输出控制) integer-array → HTuple Sequence[int] HTuple Htuple (integer) (int / long) (Hlong ) (Hlong )
Indices of matched input points in image 2.
可能的前趋
points_foerstner points_foerstner PointsFoerstner PointsFoerstner PointsFoerstner points_foerstner ,
points_harris points_harris PointsHarris PointsHarris PointsHarris points_harris
可能的后继
vector_to_essential_matrix vector_to_essential_matrix VectorToEssentialMatrix VectorToEssentialMatrix VectorToEssentialMatrix vector_to_essential_matrix
另见
match_fundamental_matrix_ransac match_fundamental_matrix_ransac MatchFundamentalMatrixRansac MatchFundamentalMatrixRansac MatchFundamentalMatrixRansac match_fundamental_matrix_ransac ,
match_rel_pose_ransac match_rel_pose_ransac MatchRelPoseRansac MatchRelPoseRansac MatchRelPoseRansac match_rel_pose_ransac ,
stationary_camera_self_calibration stationary_camera_self_calibration StationaryCameraSelfCalibration StationaryCameraSelfCalibration StationaryCameraSelfCalibration stationary_camera_self_calibration
参考文献
Richard Hartley, Andrew Zisserman: “Multiple View Geometry in
Computer Vision”; Cambridge University Press, Cambridge; 2003.
Olivier Faugeras, Quang-Tuan Luong: “The Geometry of Multiple
Images: The Laws That Govern the Formation of Multiple Images of a
Scene and Some of Their Applications”; MIT Press, Cambridge, MA;
2001.
模块
三维计量