clear_samples_class_mlpT_clear_samples_class_mlpClearSamplesClassMlpClearSamplesClassMlpclear_samples_class_mlp (算子)
名称
clear_samples_class_mlpT_clear_samples_class_mlpClearSamplesClassMlpClearSamplesClassMlpclear_samples_class_mlp — 清除多层感知机的训练数据。
签名
Herror T_clear_samples_class_mlp(const Htuple MLPHandle)
def clear_samples_class_mlp(mlphandle: MaybeSequence[HHandle]) -> None
描述
clear_samples_class_mlpclear_samples_class_mlpClearSamplesClassMlpClearSamplesClassMlpClearSamplesClassMlpclear_samples_class_mlp clears all training samples that
have been added to the multilayer perceptron (MLP)
MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle with add_sample_class_mlpadd_sample_class_mlpAddSampleClassMlpAddSampleClassMlpAddSampleClassMlpadd_sample_class_mlp or
read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp。clear_samples_class_mlpclear_samples_class_mlpClearSamplesClassMlpClearSamplesClassMlpClearSamplesClassMlpclear_samples_class_mlp
should only be used if the MLP is trained in the same process that
uses the MLP for evaluation with evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp or for
classification with classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp。In this case, the
memory required for the training samples can be freed with
clear_samples_class_mlpclear_samples_class_mlpClearSamplesClassMlpClearSamplesClassMlpClearSamplesClassMlpclear_samples_class_mlp, and hence memory can be saved. In
the normal usage, in which the MLP is trained offline and written to
a file with write_class_mlpwrite_class_mlpWriteClassMlpWriteClassMlpWriteClassMlpwrite_class_mlp, it is typically unnecessary to
call clear_samples_class_mlpclear_samples_class_mlpClearSamplesClassMlpClearSamplesClassMlpClearSamplesClassMlpclear_samples_class_mlp because write_class_mlpwrite_class_mlpWriteClassMlpWriteClassMlpWriteClassMlpwrite_class_mlp
does not save the training samples, and hence the online process,
which reads the MLP with read_class_mlpread_class_mlpReadClassMlpReadClassMlpReadClassMlpread_class_mlp, requires no memory
for the training samples.
执行信息
- 多线程类型:可重入(与非独占算子并行运行)。
- 多线程作用域:全局(可从任何线程调用)。
- 未采用并行化处理。
此算子修改后续输入参数的状态:
在执行此算子时,若该参数值需在多个线程间使用,则必须对其访问进行同步。
参数
MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle (输入控制,状态被修改) class_mlp(-array) → HClassMlp, HTupleMaybeSequence[HHandle]HTupleHtuple (handle) (IntPtr) (HHandle) (handle)
MLP 句柄。
结果
如果参数有效,算子
clear_samples_class_mlpclear_samples_class_mlpClearSamplesClassMlpClearSamplesClassMlpClearSamplesClassMlpclear_samples_class_mlp 返回值 2 ( H_MSG_TRUE )。如有必要,则抛出异常。
可能的前趋
train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp,
write_samples_class_mlpwrite_samples_class_mlpWriteSamplesClassMlpWriteSamplesClassMlpWriteSamplesClassMlpwrite_samples_class_mlp
另见
create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp,
clear_class_mlpclear_class_mlpClearClassMlpClearClassMlpClearClassMlpclear_class_mlp,
add_sample_class_mlpadd_sample_class_mlpAddSampleClassMlpAddSampleClassMlpAddSampleClassMlpadd_sample_class_mlp,
read_samples_class_mlpread_samples_class_mlpReadSamplesClassMlpReadSamplesClassMlpReadSamplesClassMlpread_samples_class_mlp
模块
基础