classify_class_mlpT_classify_class_mlpClassifyClassMlpClassifyClassMlpclassify_class_mlp (Operator)

名称

classify_class_mlpT_classify_class_mlpClassifyClassMlpClassifyClassMlpclassify_class_mlp — 通过多层感知机计算特征向量的类。

签名

classify_class_mlp( : : MLPHandle, Features, Num : Class, Confidence)

Herror T_classify_class_mlp(const Htuple MLPHandle, const Htuple Features, const Htuple Num, Htuple* Class, Htuple* Confidence)

void ClassifyClassMlp(const HTuple& MLPHandle, const HTuple& Features, const HTuple& Num, HTuple* Class, HTuple* Confidence)

HTuple HClassMlp::ClassifyClassMlp(const HTuple& Features, const HTuple& Num, HTuple* Confidence) const

Hlong HClassMlp::ClassifyClassMlp(const HTuple& Features, const HTuple& Num, double* Confidence) const

static void HOperatorSet.ClassifyClassMlp(HTuple MLPHandle, HTuple features, HTuple num, out HTuple classVal, out HTuple confidence)

HTuple HClassMlp.ClassifyClassMlp(HTuple features, HTuple num, out HTuple confidence)

int HClassMlp.ClassifyClassMlp(HTuple features, HTuple num, out double confidence)

def classify_class_mlp(mlphandle: HHandle, features: Sequence[float], num: Sequence[int]) -> Tuple[Sequence[int], Sequence[float]]

def classify_class_mlp_s(mlphandle: HHandle, features: Sequence[float], num: Sequence[int]) -> Tuple[int, float]

描述

classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp computes the best NumNumNumNumnumnum classes of the feature vector FeaturesFeaturesFeaturesFeaturesfeaturesfeatures with the multilayer perceptron (MLP) MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle and returns the classes in ClassClassClassClassclassValclass and the corresponding confidences (probabilities) of the classes in ConfidenceConfidenceConfidenceConfidenceconfidenceconfidence. Before calling classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp, the MLP must be trained with train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp.

classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp can only be called if the MLP is used as a classifier with OutputFunctionOutputFunctionOutputFunctionOutputFunctionoutputFunctionoutput_function = 'softmax'"softmax""softmax""softmax""softmax""softmax" (see create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp). Otherwise, an error message is returned. classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp corresponds to a call to evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp and an additional step that extracts the best NumNumNumNumnumnum classes. As described with evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp, the output values of the MLP can be interpreted as probabilities of the occurrence of the respective classes. In most cases it should be sufficient to use NumNumNumNumnumnum = 1 in order to decide whether the probability of the best class is high enough. In some applications it may be interesting to also take the second best class into account (NumNumNumNumnumnum = 2), particularly if it can be expected that the classes show a significant degree of overlap.

执行信息

参数

MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle (input_control)  class_mlp HClassMlp, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

MLP handle.

FeaturesFeaturesFeaturesFeaturesfeaturesfeatures (input_control)  real-array HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Feature vector.

NumNumNumNumnumnum (input_control)  integer-array HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of best classes to determine.

默认值: 1

建议值: 1, 2, 3, 4, 5

ClassClassClassClassclassValclass (output_control)  integer(-array) HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Result of classifying the feature vector with the MLP.

ConfidenceConfidenceConfidenceConfidenceconfidenceconfidence (output_control)  real(-array) HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

Confidence(s) of the class(es) of the feature vector.

结果

If the parameters are valid, the operator classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp returns the value 2 ( H_MSG_TRUE) . If necessary, an exception is raised.

可能的前置算子

train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp, read_class_mlpread_class_mlpReadClassMlpReadClassMlpReadClassMlpread_class_mlp

替代算子

apply_dl_classifierapply_dl_classifierApplyDlClassifierApplyDlClassifierApplyDlClassifierapply_dl_classifier, evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp

另见

create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp

参考文献

Christopher M. Bishop: “Neural Networks for Pattern Recognition”; Oxford University Press, Oxford; 1995.
Andrew Webb: “Statistical Pattern Recognition”; Arnold, London; 1999.

模块

Foundation