classify_class_mlpT_classify_class_mlpClassifyClassMlpClassifyClassMlpclassify_class_mlp分类类多层感知机(算子)

名称

classify_class_mlpT_classify_class_mlpClassifyClassMlpClassifyClassMlpclassify_class_mlp — 通过多层感知机计算特征向量的类。

签名

classify_class_mlp( : : MLPHandle, Features, Num : Class, Confidence)

Herror T_classify_class_mlp(const Htuple MLPHandle, const Htuple Features, const Htuple Num, Htuple* Class, Htuple* Confidence)

void ClassifyClassMlp(const HTuple& MLPHandle, const HTuple& Features, const HTuple& Num, HTuple* Class, HTuple* Confidence)

HTuple HClassMlp::ClassifyClassMlp(const HTuple& Features, const HTuple& Num, HTuple* Confidence) const

Hlong HClassMlp::ClassifyClassMlp(const HTuple& Features, const HTuple& Num, double* Confidence) const

static void HOperatorSet.ClassifyClassMlp(HTuple MLPHandle, HTuple features, HTuple num, out HTuple classVal, out HTuple confidence)

HTuple HClassMlp.ClassifyClassMlp(HTuple features, HTuple num, out HTuple confidence)

int HClassMlp.ClassifyClassMlp(HTuple features, HTuple num, out double confidence)

def classify_class_mlp(mlphandle: HHandle, features: Sequence[float], num: Sequence[int]) -> Tuple[Sequence[int], Sequence[float]]

def classify_class_mlp_s(mlphandle: HHandle, features: Sequence[float], num: Sequence[int]) -> Tuple[int, float]

描述

classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp 计算特征向量 FeaturesFeaturesFeaturesFeaturesfeaturesfeatures 使用 MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle 实现的多层感知机(MLP)所能识别的最佳 NumNumNumNumnumnum 个类别,并将类别结果存储在 ClassClassClassClassclassValclass 中,同时将各类别的置信度(概率)存储在 ConfidenceConfidenceConfidenceConfidenceconfidenceconfidence 中。调用 classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp 之前,必须使用 train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp 对 MLP 进行训练。

classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp 仅在多层感知机(MLP)作为分类器使用且 OutputFunctionOutputFunctionOutputFunctionOutputFunctionoutputFunctionoutput_function = 'softmax'"softmax""softmax""softmax""softmax""softmax" 时可调用(参见 create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp)。否则将返回错误信息。classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp 相当于调用 evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp 并额外提取最佳 NumNumNumNumnumnum 个类别的操作。如 evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp 所述,MLP 的输出值可解释为各类别的出现概率。多数情况下,仅需使用 NumNumNumNumnumnum = 1 判断最佳类别的概率是否足够高即可。某些应用中(尤其当类别间存在显著重叠时),考虑次优类别(NumNumNumNumnumnum = 2)可能更具价值。

执行信息

参数

MLPHandleMLPHandleMLPHandleMLPHandleMLPHandlemlphandle (输入控制)  class_mlp HClassMlp, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

MLP 句柄。

FeaturesFeaturesFeaturesFeaturesfeaturesfeatures (输入控制)  real-array HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

特征向量。

NumNumNumNumnumnum (输入控制)  integer-array HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

需确定的最佳类别数量。

默认值: 1

建议值: 1, 2, 3, 4, 5

ClassClassClassClassclassValclass (输出控制)  integer(-array) HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

使用 MLP 对特征向量进行分类的结果。

ConfidenceConfidenceConfidenceConfidenceconfidenceconfidence (输出控制)  real(-array) HTupleSequence[float]HTupleHtuple (real) (double) (double) (double)

特征向量的类别置信度。

结果

如果参数有效,算子 classify_class_mlpclassify_class_mlpClassifyClassMlpClassifyClassMlpClassifyClassMlpclassify_class_mlp 返回值 2 (H_MSG_TRUE)。如有必要,则抛出异常。

可能的前趋

train_class_mlptrain_class_mlpTrainClassMlpTrainClassMlpTrainClassMlptrain_class_mlp, read_class_mlpread_class_mlpReadClassMlpReadClassMlpReadClassMlpread_class_mlp

替代

apply_dl_classifierapply_dl_classifierApplyDlClassifierApplyDlClassifierApplyDlClassifierapply_dl_classifier, evaluate_class_mlpevaluate_class_mlpEvaluateClassMlpEvaluateClassMlpEvaluateClassMlpevaluate_class_mlp

另见

create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp

参考文献

Christopher M. Bishop: “Neural Networks for Pattern Recognition”; Oxford University Press, Oxford; 1995.
Andrew Webb: “Statistical Pattern Recognition”; Arnold, London; 1999.

模块

基础