get_params_class_knnT_get_params_class_knnGetParamsClassKnnGetParamsClassKnnget_params_class_knn (算子)

名称

get_params_class_knnT_get_params_class_knnGetParamsClassKnnGetParamsClassKnnget_params_class_knn — 获取 k-NN 分类的参数。

签名

get_params_class_knn( : : KNNHandle, GenParamName : GenParamValue)

Herror T_get_params_class_knn(const Htuple KNNHandle, const Htuple GenParamName, Htuple* GenParamValue)

void GetParamsClassKnn(const HTuple& KNNHandle, const HTuple& GenParamName, HTuple* GenParamValue)

HTuple HClassKnn::GetParamsClassKnn(const HTuple& GenParamName) const

static void HOperatorSet.GetParamsClassKnn(HTuple KNNHandle, HTuple genParamName, out HTuple genParamValue)

HTuple HClassKnn.GetParamsClassKnn(HTuple genParamName)

def get_params_class_knn(knnhandle: HHandle, gen_param_name: Sequence[str]) -> Sequence[Union[int, float, str]]

描述

get_params_class_knnget_params_class_knnGetParamsClassKnnGetParamsClassKnnGetParamsClassKnnget_params_class_knn gets parameters of the k-NN referred by KNNHandleKNNHandleKNNHandleKNNHandleKNNHandleknnhandle. The possible entries in GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name are:

'method'"method""method""method""method""method"

Retrieve the currently selected method for determining the result of classify_class_knnclassify_class_knnClassifyClassKnnClassifyClassKnnClassifyClassKnnclassify_class_knn。The result can be 'classes_distance'"classes_distance""classes_distance""classes_distance""classes_distance""classes_distance", 'classes_frequency'"classes_frequency""classes_frequency""classes_frequency""classes_frequency""classes_frequency", 'classes_weighted_frequencies'"classes_weighted_frequencies""classes_weighted_frequencies""classes_weighted_frequencies""classes_weighted_frequencies""classes_weighted_frequencies" or 'neighbors_distance'"neighbors_distance""neighbors_distance""neighbors_distance""neighbors_distance""neighbors_distance".

'k'"k""k""k""k""k"

The number of nearest neighbors that is considered to determine the results.

'max_num_classes'"max_num_classes""max_num_classes""max_num_classes""max_num_classes""max_num_classes"

The maximum number of classes that are returned. This parameter is ignored in case the method 'neighbors_distance'"neighbors_distance""neighbors_distance""neighbors_distance""neighbors_distance""neighbors_distance" is selected.

'num_checks'"num_checks""num_checks""num_checks""num_checks""num_checks"

Defines the maximum number of runs through the trees.

'epsilon'"epsilon""epsilon""epsilon""epsilon""epsilon"

A parameter to lower the accuracy in the tree to gain speed.

执行信息

参数

KNNHandleKNNHandleKNNHandleKNNHandleKNNHandleknnhandle (输入控制)  class_knn HClassKnn, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

k-NN 分类器的句柄。

GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name (输入控制)  string-array HTupleSequence[str]HTupleHtuple (string) (string) (HString) (char*)

Names of the parameters that can be read from the k-NN classifier.

默认值: ['method','k'] ["method","k"] ["method","k"] ["method","k"] ["method","k"] ["method","k"]

值列表: 'epsilon'"epsilon""epsilon""epsilon""epsilon""epsilon", 'k'"k""k""k""k""k", 'method'"method""method""method""method""method", 'num_checks'"num_checks""num_checks""num_checks""num_checks""num_checks"

GenParamValueGenParamValueGenParamValueGenParamValuegenParamValuegen_param_value (输出控制)  number-array HTupleSequence[Union[int, float, str]]HTupleHtuple (integer / real / string) (int / long / double / string) (Hlong / double / HString) (Hlong / double / char*)

Values of the selected parameters.

结果

如果参数有效,算子 get_params_class_knnget_params_class_knnGetParamsClassKnnGetParamsClassKnnGetParamsClassKnnget_params_class_knn 返回值 2 ( H_MSG_TRUE )。如有必要,则抛出异常。

可能的前趋

train_class_knntrain_class_knnTrainClassKnnTrainClassKnnTrainClassKnntrain_class_knn, read_class_knnread_class_knnReadClassKnnReadClassKnnReadClassKnnread_class_knn

可能的后继

classify_class_knnclassify_class_knnClassifyClassKnnClassifyClassKnnClassifyClassKnnclassify_class_knn

另见

create_class_knncreate_class_knnCreateClassKnnCreateClassKnnCreateClassKnncreate_class_knn, read_class_knnread_class_knnReadClassKnnReadClassKnnReadClassKnnread_class_knn

参考文献

Marius Muja, David G. Lowe: “Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration”; International Conference on Computer Vision Theory and Applications (VISAPP 09); 2009.

模块

基础