create_class_knnT_create_class_knnCreateClassKnnCreateClassKnncreate_class_knn (Operator)

名称

create_class_knnT_create_class_knnCreateClassKnnCreateClassKnncreate_class_knn — 创建一个 k-最近邻(k-NN)分类器。

签名

create_class_knn( : : NumDim : KNNHandle)

Herror T_create_class_knn(const Htuple NumDim, Htuple* KNNHandle)

void CreateClassKnn(const HTuple& NumDim, HTuple* KNNHandle)

void HClassKnn::HClassKnn(const HTuple& NumDim)

void HClassKnn::CreateClassKnn(const HTuple& NumDim)

static void HOperatorSet.CreateClassKnn(HTuple numDim, out HTuple KNNHandle)

public HClassKnn(HTuple numDim)

void HClassKnn.CreateClassKnn(HTuple numDim)

def create_class_knn(num_dim: Sequence[int]) -> HHandle

描述

create_class_knncreate_class_knnCreateClassKnnCreateClassKnnCreateClassKnncreate_class_knn creates a k-nearest neighbors (k-NN) data structure. This can be either used to classify data or to approximately locate nearest neighbors in a NumDimNumDimNumDimNumDimnumDimnum_dim-dimensional space.

Most of the operators described in Classification/K-Nearest-Neighbor use the resulting handle KNNHandleKNNHandleKNNHandleKNNHandleKNNHandleknnhandle.

The k-NN classifies by searching approximately the nearest neighbors and returning their classes as result. With the used approximation, the search time is logarithmically to the number of samples and dimensions.

The dimension of the feature vectors is the only parameter that necessarily has to be set in NumDimNumDimNumDimNumDimnumDimnum_dim.

执行信息

This operator returns a handle. Note that the state of an instance of this handle type may be changed by specific operators even though the handle is used as an input parameter by those operators.

参数

NumDimNumDimNumDimNumDimnumDimnum_dim (input_control)  number-array HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of dimensions of the feature.

默认值: 10

KNNHandleKNNHandleKNNHandleKNNHandleKNNHandleknnhandle (output_control)  class_knn HClassKnn, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

Handle of the k-NN classifier.

结果

If the parameters are valid, the operator create_class_knncreate_class_knnCreateClassKnnCreateClassKnnCreateClassKnncreate_class_knn returns the value 2 ( H_MSG_TRUE) . If necessary, an exception is raised.

可能的后继算子

add_sample_class_knnadd_sample_class_knnAddSampleClassKnnAddSampleClassKnnAddSampleClassKnnadd_sample_class_knn, train_class_knntrain_class_knnTrainClassKnnTrainClassKnnTrainClassKnntrain_class_knn

替代算子

create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm, create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp

另见

select_feature_set_knnselect_feature_set_knnSelectFeatureSetKnnSelectFeatureSetKnnSelectFeatureSetKnnselect_feature_set_knn, read_class_knnread_class_knnReadClassKnnReadClassKnnReadClassKnnread_class_knn

参考文献

Marius Muja, David G. Lowe: “Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration”; International Conference on Computer Vision Theory and Applications (VISAPP 09); 2009.

模块

Foundation