create_class_knn — 创建一个 k-最近邻(k-NN)分类器。
create_class_knn creates a k-nearest neighbors (k-NN) data structure.
This can be either used to classify data or to approximately locate
nearest neighbors in a NumDim-dimensional space.
Most of the operators described in Classification/K-Nearest-Neighbor use
the resulting handle KNNHandle。
The k-NN classifies by searching approximately the nearest neighbors and returning their classes as result. With the used approximation, the search time is logarithmically to the number of samples and dimensions.
The dimension of the feature vectors is the only parameter that necessarily
has to be set in NumDim。
此算子返回一个句柄。请注意,即使该句柄被用作特定算子的输入参数,这些算子仍可能改变此句柄类型的实例状态。
NumDim (输入控制) number-array → (integer)
Number of dimensions of the feature.
默认值: 10
KNNHandle (输出控制) class_knn → (handle)
k-NN 分类器的句柄。
如果参数有效,算子 create_class_knn 返回值 2 ( H_MSG_TRUE )。如有必要,则抛出异常。
add_sample_class_knn,
train_class_knn
create_class_svm,
create_class_mlp
select_feature_set_knn,
read_class_knn
Marius Muja, David G. Lowe: “Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration”; International Conference on Computer Vision Theory and Applications (VISAPP 09); 2009.
基础