create_class_knnT_create_class_knnCreateClassKnnCreateClassKnncreate_class_knn (算子)

名称

create_class_knnT_create_class_knnCreateClassKnnCreateClassKnncreate_class_knn — 创建一个 k-最近邻(k-NN)分类器。

签名

create_class_knn( : : NumDim : KNNHandle)

Herror T_create_class_knn(const Htuple NumDim, Htuple* KNNHandle)

void CreateClassKnn(const HTuple& NumDim, HTuple* KNNHandle)

void HClassKnn::HClassKnn(const HTuple& NumDim)

void HClassKnn::CreateClassKnn(const HTuple& NumDim)

static void HOperatorSet.CreateClassKnn(HTuple numDim, out HTuple KNNHandle)

public HClassKnn(HTuple numDim)

void HClassKnn.CreateClassKnn(HTuple numDim)

def create_class_knn(num_dim: Sequence[int]) -> HHandle

描述

create_class_knncreate_class_knnCreateClassKnnCreateClassKnnCreateClassKnncreate_class_knn creates a k-nearest neighbors (k-NN) data structure. This can be either used to classify data or to approximately locate nearest neighbors in a NumDimNumDimNumDimNumDimnumDimnum_dim-dimensional space.

Most of the operators described in Classification/K-Nearest-Neighbor use the resulting handle KNNHandleKNNHandleKNNHandleKNNHandleKNNHandleknnhandle

The k-NN classifies by searching approximately the nearest neighbors and returning their classes as result. With the used approximation, the search time is logarithmically to the number of samples and dimensions.

The dimension of the feature vectors is the only parameter that necessarily has to be set in NumDimNumDimNumDimNumDimnumDimnum_dim

执行信息

此算子返回一个句柄。请注意,即使该句柄被用作特定算子的输入参数,这些算子仍可能改变此句柄类型的实例状态。

参数

NumDimNumDimNumDimNumDimnumDimnum_dim (输入控制)  number-array HTupleSequence[int]HTupleHtuple (integer) (int / long) (Hlong) (Hlong)

Number of dimensions of the feature.

默认值: 10

KNNHandleKNNHandleKNNHandleKNNHandleKNNHandleknnhandle (输出控制)  class_knn HClassKnn, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

k-NN 分类器的句柄。

结果

如果参数有效,算子 create_class_knncreate_class_knnCreateClassKnnCreateClassKnnCreateClassKnncreate_class_knn 返回值 2 ( H_MSG_TRUE )。如有必要,则抛出异常。

可能的后继

add_sample_class_knnadd_sample_class_knnAddSampleClassKnnAddSampleClassKnnAddSampleClassKnnadd_sample_class_knn, train_class_knntrain_class_knnTrainClassKnnTrainClassKnnTrainClassKnntrain_class_knn

替代

create_class_svmcreate_class_svmCreateClassSvmCreateClassSvmCreateClassSvmcreate_class_svm, create_class_mlpcreate_class_mlpCreateClassMlpCreateClassMlpCreateClassMlpcreate_class_mlp

另见

select_feature_set_knnselect_feature_set_knnSelectFeatureSetKnnSelectFeatureSetKnnSelectFeatureSetKnnselect_feature_set_knn, read_class_knnread_class_knnReadClassKnnReadClassKnnReadClassKnnread_class_knn

参考文献

Marius Muja, David G. Lowe: “Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration”; International Conference on Computer Vision Theory and Applications (VISAPP 09); 2009.

模块

基础