classify_image_class_gmmT_classify_image_class_gmmClassifyImageClassGmmClassifyImageClassGmmclassify_image_class_gmm分类图像类高斯混合模型(算子)

名称

classify_image_class_gmmT_classify_image_class_gmmClassifyImageClassGmmClassifyImageClassGmmclassify_image_class_gmm — 使用高斯混合模型对图像进行分类。

签名

classify_image_class_gmm(Image : ClassRegions : GMMHandle, RejectionThreshold : )

Herror T_classify_image_class_gmm(const Hobject Image, Hobject* ClassRegions, const Htuple GMMHandle, const Htuple RejectionThreshold)

void ClassifyImageClassGmm(const HObject& Image, HObject* ClassRegions, const HTuple& GMMHandle, const HTuple& RejectionThreshold)

HRegion HImage::ClassifyImageClassGmm(const HClassGmm& GMMHandle, double RejectionThreshold) const

HRegion HClassGmm::ClassifyImageClassGmm(const HImage& Image, double RejectionThreshold) const

static void HOperatorSet.ClassifyImageClassGmm(HObject image, out HObject classRegions, HTuple GMMHandle, HTuple rejectionThreshold)

HRegion HImage.ClassifyImageClassGmm(HClassGmm GMMHandle, double rejectionThreshold)

HRegion HClassGmm.ClassifyImageClassGmm(HImage image, double rejectionThreshold)

def classify_image_class_gmm(image: HObject, gmmhandle: HHandle, rejection_threshold: float) -> HObject

描述

classify_image_class_gmmclassify_image_class_gmmClassifyImageClassGmmClassifyImageClassGmmClassifyImageClassGmmclassify_image_class_gmm 使用高斯混合模型(GMM)GMMHandleGMMHandleGMMHandleGMMHandleGMMHandlegmmhandle 对多通道图像 ImageImageImageImageimageimage 执行像素分类。在调用 classify_image_class_gmmclassify_image_class_gmmClassifyImageClassGmmClassifyImageClassGmmClassifyImageClassGmmclassify_image_class_gmm 之前,必须通过 train_class_gmmtrain_class_gmmTrainClassGmmTrainClassGmmTrainClassGmmtrain_class_gmm 对 GMM 进行训练。图像 ImageImageImageImageimageimage 必须具有 create_class_gmmcreate_class_gmmCreateClassGmmCreateClassGmmCreateClassGmmcreate_class_gmm 中指定的 NumDimNumDimNumDimNumDimnumDimnum_dim 个通道。输出时,ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions 将包含 NumClassesNumClassesNumClassesNumClassesnumClassesnum_classes 个区域作为分类结果。请注意,ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions 返回的区域顺序与 add_samples_image_class_gmmadd_samples_image_class_gmmAddSamplesImageClassGmmAddSamplesImageClassGmmAddSamplesImageClassGmmadd_samples_image_class_gmm 中训练区域定义的类别顺序一致。参数 RejectionThresholdRejectionThresholdRejectionThresholdRejectionThresholdrejectionThresholdrejection_threshold 可用于剔除分类结果不确定的像素。RejectionThresholdRejectionThresholdRejectionThresholdRejectionThresholdrejectionThresholdrejection_threshold 表示分类结果返回的 K-sigma 概率测度阈值(详见 classify_class_gmmclassify_class_gmmClassifyClassGmmClassifyClassGmmClassifyClassGmmclassify_class_gmmevaluate_class_gmmevaluate_class_gmmEvaluateClassGmmEvaluateClassGmmEvaluateClassGmmevaluate_class_gmm)。所有概率低于 RejectionThresholdRejectionThresholdRejectionThresholdRejectionThresholdrejectionThresholdrejection_threshold 的像素均不被分配至任何类别。

执行信息

参数

ImageImageImageImageimageimage (输入对象)  (multichannel-)image objectHImageHObjectHImageHobject (byte / cyclic / direction / int1 / int2 / uint2 / int4 / real)

输入图像。

ClassRegionsClassRegionsClassRegionsClassRegionsclassRegionsclass_regions (输出对象)  region-array objectHRegionHObjectHRegionHobject *

分割的类别。

GMMHandleGMMHandleGMMHandleGMMHandleGMMHandlegmmhandle (输入控制)  class_gmm HClassGmm, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

GMM 句柄。

RejectionThresholdRejectionThresholdRejectionThresholdRejectionThresholdrejectionThresholdrejection_threshold (输入控制)  real HTuplefloatHTupleHtuple (real) (double) (double) (double)

分类拒绝的阈值。

默认值: 0.5

建议值: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

限制: RejectionThreshold >= 0.0 && RejectionThreshold <= 1.0

示例(HDevelop)

read_image (Image, 'ic')
gen_rectangle1 (Board, 80, 320, 110, 350)
gen_rectangle1 (Capacitor, 359, 263, 371, 302)
gen_rectangle1 (Resistor, 200, 252, 290, 256)
gen_rectangle1 (IC, 180, 135, 216, 165)
concat_obj (Board, Capacitor, Classes)
concat_obj (Classes, Resistor, Classes)
concat_obj (Classes, IC, Classes)
create_class_gmm (3, 4, [1,30], 'full', 'none',0, 42, GMMHandle)
add_samples_image_class_gmm (Image, Classes, GMMHandle, 1.5)
get_sample_num_class_gmm (GMMHandle, NumSamples)
train_class_gmm (GMMHandle, 150, 1e-4, 'training', 1e-4, Centers, Iter)
classify_image_class_gmm (Image, ClassRegions, GMMHandle, 0.0001)

结果

如果参数有效,算子 classify_image_class_gmmclassify_image_class_gmmClassifyImageClassGmmClassifyImageClassGmmClassifyImageClassGmmclassify_image_class_gmm 返回值 2 (H_MSG_TRUE)。如有必要,则抛出异常。

可能的前趋

train_class_gmmtrain_class_gmmTrainClassGmmTrainClassGmmTrainClassGmmtrain_class_gmm, read_class_gmmread_class_gmmReadClassGmmReadClassGmmReadClassGmmread_class_gmm

替代

classify_image_class_knnclassify_image_class_knnClassifyImageClassKnnClassifyImageClassKnnClassifyImageClassKnnclassify_image_class_knn, classify_image_class_mlpclassify_image_class_mlpClassifyImageClassMlpClassifyImageClassMlpClassifyImageClassMlpclassify_image_class_mlp, classify_image_class_svmclassify_image_class_svmClassifyImageClassSvmClassifyImageClassSvmClassifyImageClassSvmclassify_image_class_svm, classify_image_class_lutclassify_image_class_lutClassifyImageClassLutClassifyImageClassLutClassifyImageClassLutclassify_image_class_lut, class_ndim_normclass_ndim_normClassNdimNormClassNdimNormClassNdimNormclass_ndim_norm, class_2dim_supclass_2dim_supClass2dimSupClass2dimSupClass2dimSupclass_2dim_sup

另见

add_samples_image_class_gmmadd_samples_image_class_gmmAddSamplesImageClassGmmAddSamplesImageClassGmmAddSamplesImageClassGmmadd_samples_image_class_gmm, create_class_gmmcreate_class_gmmCreateClassGmmCreateClassGmmCreateClassGmmcreate_class_gmm

模块

基础