HALCON

a product of MVTec

Solution Guide lII-B
2D Measuring

HALCON 23.05 Progress

EC
M ’ MVTec Software GmbH Building Vision for Business

How to measure in 2D with high accuracy, Version 23.05.0.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

EC
Copyright © 2007-2023 by MVTec Software GmbH, Munich, Germany mviec software cmbH

Protected by the following patents: US 7,239,929, US 7,751,625, US 7,953,290, US 7,953,291, US 8,260,059, US 8,379,014,
US 8,830,229, US 11,328,478. Further patents pending.

Microsoft, Windows, Windows 10 (x64 editions), 11, Windows Server 2016, 2019, 2022 Microsoft .NET, Visual C++ and
Visual Basic are either trademarks or registered trademarks of Microsoft Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at: http://www.halcon.com

http://www.halcon.com

About This Manual

In a broad range of applications, 2D measuring is applied to get spatial information about planar objects or object
parts that are extracted from images. This Solution Guide leads you through a variety of approaches suited to
measure in 2D with HALCON.

Section 1 on page 7 gives a short introduction to the general topic. Then, a first example is presented that gives an
impression on the variety of methods usable for 2D measuring tasks.

In section 2 on page 11, the different HALCON methods that can be used to extract objects and their features are
introduced. The methods comprise

* region processing (see section 2.1 on page 11),

* contour processing (see section 2.2 on page 14),

* 2D metrology (see section 2.3 on page 21), and

» simple geometric operations (see section 2.4 on page 25).
Section 3 on page 27 provides you with practical tips for the tool selection. In particular, section 3.1 on page 27
guides you from the features to extract to the methods to choose and section 3.2 on page 31 compares the two most

common and competing approaches, region processing and contour processing. Both can be used for similar goals
but are differently suited depending on the required precision and the appearance of the object in the image.

Practical guidance is given by a comprehensive collection of HDevelop examples in section 4 on page 35. The
HDevelop example programs that are presented in this Solution Guide can be found in the specified subdirectories
of the directory %HALCONEXAMPLESY,.

Additional aspects that may be of interest are discussed in section 5. In particular, the identification of correspond-
ing object parts in different images (see section 5.1 on page 63) and means to measure in world coordinates (see
section 5.2 on page 68) are discussed.

Symbols

The following symbol is used within the manual:

This symbol indicates an information you should pay attention to.

Contents

1 Introduction

2 Basic Tools

2.1

2.2

23

24

Region Processing e e e
2.1.1 Preprocess ImageorRegion
2.1.2 Segment the Image into Regions L.
2.1.3 Selectand Modify Regions L
2.1.4 Extract Features e
Contour Processing e e e e e e e
2.2.1 Create Contours it e e e
222 GetRelevant Contourso e e e
223 Segment CONtOUrS o vt v it e e e e e e e e e e e e
2.2.4 Extract Features of Contour Segments by Approximating them by known Shapes
2.2.5 Extract Features of Contours Without Knowing Their Shapes
2D Metrology o e e e e e
2.3.1 Aligning the Metrology Model based on different methods
2.3.2 QueryingResults
Geometric Operations i e e e e e

3 Tool Selection

3.1

3.2

From the Feature to the Tool
3.1 Area.
3.1.2 Orientation and Angle
3.1.3 Position oL
3.1.4 Dimension and Distance
3.1.5 Numberof Objects
Region Processing vs. Contour Processing

4 Examples for Practical Guidance

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Rotate Image and Region (2D Transformation)
Get Width of Screw Thread
Get Deviation of a Contour from a Straight Line
Get the Distance between Straight Parallel Contours . .
Get Width of Linear Structures
Get Lines and Junctionsof aGrid
Get Positions of Corner Points
Get Angle between AdjacentLines

Get Positions, Orientations, and Extents of Rectangles

Get Radii of Circles and Circular Arcs
Get Deviation of a Contour from a Circle
Inspect Ball Grid Array (BGA)
Extract Contours from Color Images

5 Miscellaneous

5.1
52

Index

Identify Corresponding Object Parts
Measure in World Coordinates

11
11
12
12
12
14
14
15
16
18
19
20
21
23
24
25

27
27
29
29
30
30
31
31

35
35
36
37
41
43
44
47
49
49
52
54
56
60

63
63
68

73

Introduction

B-7

Chapter 1

Introduction

HALCON provides various methods that are suited for a broad range of different 2D measurement tasks. Mea-
suring in images consists of the extraction of specific features of objects. 2D features that are often extracted
comprise

* the area of an object, i.e., the number of pixels representing the object,
* the orientation of the object,
* the angle between objects or segments of objects,

* the position of an object,

* the dimension of an object, i.e., its diameter, width, height, or the distance between objects or parts of
objects, and

¢ the number of objects.

To extract the features, several tools are available. Which tool to choose depends on the goal of the measuring task,
the required accuracy, and the way the object is represented in the image. This Solution Guide leads you through
the alternative approaches of common 2D measuring applications.

This chapter shows a first example for a 2D measuring application that uses different basic measuring tools. To fol-
low the example actively, start the HDevelop program ;HALCONEXAMPLES’\solution_guide\2d_measuring\
measure_metal_part_first_example.hdev, which extracts several features from a flat metal part; the steps
described below start after the initialization of the application (press Run once to reach this point).

Step 1: Create regions and extract basic features

threshold (Image, Region, 100, 255)

In a first step, region processing is used to extract some basic features. The image is segmented by a simple
threshold operator. The result of the operator is a single region that can consist of several connected components.
If more than one connected component is returned, the components can be separated by the operator connection,
which is recommended for most applications. Here, the returned region consists of only one connected component,
SO Nno separation is necessary.

For the obtained region representing the metal part, the operators area_center and orientation_region cal-
culate the area, position, and orientation (see figure 1.1).

area_center (Region, AreaRegion, RowCenterRegion, ColumnCenterRegion)
orientation_region (Region, OrientationRegion)
dev_display (Region)

A more advanced task is the extraction of features using the object’s outline, e.g., if you want to extract the radii
of the circular contour segments:

B-8

Introduction

Center Row: 241.04 Area: 10190 pixel

Center Column: 373.95 Orientation: -0.43 rad

Figure 1.1: Region obtained by a threshold and display of extracted features.

Step 2: Extract contours

edges_sub_pix (Image, Edges, 'canny', 0.6, 30, 70)

Here, instead of a region the contours of the object are used to get information about the object. The edges of the
metal part are extracted as subpixel-precise XLD contours (see Quick Guide, section 2.1.1 on page 10 for XLDs)
using the edge extractor edges_sub_pix. Figure 1.2 shows the metal part overlaid with the extracted edges.

Figure 1.2: XLD contours obtained by a subpixel-precise edge extraction.

Step 3: Segment contours

segment_contours_x1ld (Edges, ContoursSplit, 'lines_circles', 6, 4, 4)

The operator segment_contours_x1ld segments the contours into linear and circular segments using the
parameter ’lines_circles’. Alternative parameter values are ’lines’ to segment only into lines and
’lines_ellipses’ to segment into lines and ellipses. Figure 1.3 shows the line and circle segments for the
metal part in different colors.

B-9

Figure 1.3: Individual segments of the contours.

Step 4: Divide contour segments into linear and circular segments

Now, the circular segments are selected from the list of contour segments. To achieve this, the operator seg-
ment_contours_x1d sets the global contour attribute ’cont_approx’ for each segment. The value of this vari-
able can be queried by the operator get_contour_global_attrib_x1d. It determines, whether the segment
represents a line (’ cont_approx’ =-1), an elliptic arc (’ cont_approx’ =0), or a circular arc (’ cont_approx’
=1). As we selected the parameter ’1ines_circles’ inside segment_contours_xld, ’cont_approx’ can be
-1 or 1. Depending on this value, each contour can be approximated either by a circle or a line.

select_obj (ContoursSplit, SingleSegment, i)
get_contour_global_attrib_x1d (SingleSegment, 'cont_approx', Attrib)

Step 5: Extract radii of circular contour segments

if (Attrib == 1)
fit_circle_contour_xld (SingleSegment, 'atukey', -1, 2, 0, 5, 2, \
Row, Column, Radius, StartPhi, EndPhi, \
PointOrder)
gen_circle_contour_xld (ContCircle, Row, Column, Radius, 0, \
rad(360), 'positive', 1)

RowsCenterCircle := [RowsCenterCircle,Row]
ColumnsCenterCircle := [ColumnsCenterCircle,Column]
endif

The operator fit_circle_contour_x1d approximates segments with the value 1 by circles, i.e., it determines
the parameters describing the circle that can be fitted best into the selected contour segment. The parameters
>StartPhi’ and ’EndPhi’ determine the part of the circle belonging to the actual contour segment. The param-
eters ’Radius’, ’Row’, and *Column’ describe the radius and the position of the circle and are used as input for
the operator gen_circle_contour_x1d that generates the corresponding circles. These are then displayed.

Step 6: Extract distance between circle centers

distance_pp (RowsCenterCircle[1], ColumnsCenterCircle[1], \
RowsCenterCircle[2], ColumnsCenterCircle[2], Distance_2_3)

distance_pp (RowsCenterCircle[0], ColumnsCenterCircle[0], \
RowsCenterCircle[2], ColumnsCenterCircle[2], Distance_1_3)

distance_pp (RowsCenterCircle[3], ColumnsCenterCircle[3], \
RowsCenterCircle[4], ColumnsCenterCircle[4], Distance_4_5)

Finally, distance_pp, a simple geometric operation, uses the obtained positions of the circles to compute the
distance between selected circle centers, in particular between the circles C2 and C3, C1 and C3, as well as C4 and

B-10

Introduction

C5. Figure 1.4 shows the metal part, the approximated circles, the lines between the selected circle centers for
which the distance was computed, as well as the numerical results of the measurement.

Circle radii:

Radius
Radius
Radius
Radius
Radius

Distance Cl1-C3

Distance C4

Figure 1.4: Visualization of the fitted circles, selected distances, and numerical results.

Basic Tools

B-11

Chapter 2

Basic Tools

In our first example the measuring task started with the creation of regions or contours extracted from an image.
In general, the extraction of elements from an image is preceded by another step: the image acquisition. A good
measurement result highly depends on the quality of the image. Thus, we recommend to read the Solution Guide
II-A, appendix C on page 49, which discusses how to obtain a good quality image.

Having a suitable image at hand, the appropriate tool to extract the object feature of interest must be chosen. Here,
we shortly introduce the available basic tools, before section 3 on page 27 shows how to select the tools suited best
for specific applications. The basic tools partially correspond to the HALCON methods described in the Solution
Guide I. In particular, the basic tools comprise

* region processing (see section 2.1), which corresponds mainly to the method blob analysis (Solution Guide
I, chapter 4 on page 33),

e contour processing (see section 2.2), which here comprises the methods edge filtering (Solution Guide I,
chapter 6.1 on page 55), edge and line extraction (Solution Guide I, chapter 7 on page 63) as well as contour
processing (Solution Guide I, chapter 9 on page 79),

* 2D metrology (see section 2.3), which is an easy to use method to measure simple shapes for which the
parameters are approximately known, and

* geometric operations (see section 2.4).

2.1 Region Processing

For objects or object parts that are represented by regions of similar gray value, color, or texture, blob analysis is a
fast and simple way to extract objects and their features. Here, the image is segmented into so-called blobs, which
are regions in the image that comprise a specific range or behavior of pixel values (see Solution Guide I, chapter 4
on page 33). The blob analysis consists of different essential steps, in particular

* the preprocessing (see section 2.1.1),

* the segmentation of the image into regions (see section 2.1.2),

* the modification of the regions (see section 2.1.3), and

* the extraction of the region features that are searched for (see section 2.1.4).

The steps are not necessarily applied in that order. Especially the segmentation and the modification of regions are
often applied with changing sequence.

The following descriptions introduce several operators. Details about them can be found in the corresponding
parts of the Reference Manual (just follow the links) or in the Solution Guide I. Practical examples are provided in
section 4 on page 35. Here, a short overview about the general proceeding is given.

B-12

Basic Tools

2.1.1 Preprocess Image or Region

A preprocessing is recommended if the conditions during the image acquisition are not ideal, e.g., the image is
noisy, cluttered, or the object is disturbed or overlapped by objects of small extent so that small spots or thin lines
prevent the actual object of interest from being described by a homogeneous region.

Often applied preprocessing steps comprise the elimination of noise using mean_image or binomial_filter
and the suppression of small spots or thin lines with median_image. Further operators common to preprocess the
whole image comprise, e.g., gray_opening_shape and gray_closing_shape. A smoothing of the image can
be realized with smooth_image. If you want to smooth the image but you want to preserve edges, you can apply
anisotropic_diffusion instead.

For regions, holes can be filled up using £i11_up or a morphological operator. Morphological operators mod-
ify regions to suppress small areas, regions of a given orientation, or regions that are close to other regions. For
example, opening_circle and opening_rectanglel suppress noise, whereas closing_circle and clos-
ing_rectanglel fill gaps.

When having an inhomogeneous background, a shading correction is suitable to compensate the influence of the
background. There, a reference image of the background without the object to measure is taken and subtracted
from the images containing the object (using, e.g., the operator sub_image).

2.1.2 Segment the Image into Regions

After the preprocessing the image must be segmented into suitable regions that represent the objects of inter-
est. Several kinds of threshold operators are available that segment a gray-value image or a single channel of a
multichannel image according to its gray value distribution. Common threshold operators are threshold, bi-
nary_threshold, auto_threshold, dyn_threshold, fast_threshold, and local_threshold.

When choosing a threshold manually, it may be helpful to get information about the gray value distribution of the
image. Suitable operators are, e.g., gray_histo, histo_to_thresh, and intensity. Additionally, you can use
the online Gray Histogram inspection in HDevelop with Display set to ’threshold’ to interactively search
for a suitable threshold.

After segmenting the image with a threshold operator, the image parts of interest are available as one region. To
split this region into several regions, i.e., one region for every connected component, the operator connection
must be applied.

For objects with a honeycomb structure, watershed operators are better suited than a threshold operator, as they
segment the image based on the topology instead of the distribution of the gray values. If you want to obtain
regions having the same intensity, apply regiongrowing. For both operators a preprocessing using a low pass
filter like binomial_filter is recommended.

2.1.3 Select and Modify Regions

After segmenting the image into a set of regions, regions having specific features can be selected using operators
like select_shape or select_gray. Common features are, e.g., a specific area range, a certain shape, or a
specific gray value. For the list of all features that can be used for the selection, see, e.g., the entry in the Reference
Manual for select_shape.

In many cases, a modification of the regions is necessary. For example, small gaps or small connections can be
eliminated by a morphological operator like opening_circle or dilation_rectangle. Furthermore, different
regions can be combined by the set-theoretical operators shown in figure 2.1. There,

e unionl or union2 merge regions,

e intersection returns the intersection of regions,

e difference subtracts the overlapping part of two regions from the first region, and

* complement obtains the complement of a region.

2.1 Region Processing B-13

unioni, union2 intersection difference complement

clip_region

i)
3
-
9
[7]
3]
11]

Figure 2.1: Common set-theoretical operations to combine regions.

If you need the intersection of regions with a rectangle, e.g., created by gen_rectanglel, you should use
clip_region. It works similar to intersection but is more efficient.

Another way of modifying a region is to transform it, in particular to approximate it by a specific shape using the
operator shape_trans. This approach is suited if the features of the approximating shape describe the features
you try to obtain. For example, if you search for the maximum width of an object, you can approximate the shape
by its smallest enclosing rectangle or circle and extract its width or radius. A set of common shapes is illustrated
in figure 2.2. The possible shapes comprise

e the convex hull (’ convex?),
* the smallest enclosing circle (’outer_circle’),

* the largest circle fitting into the region (’ inner_circle’),

the smallest enclosing rectangle parallel to the coordinate axis (’rectanglel’),

the smallest enclosing rectangle with arbitrary orientation (’rectangle2’),

e the largest rectangle parallel to the coordinate axis that fits completely into the region
(’inner_rectanglel’),

the ellipse with the same moments as the input region (*ellipse’), and

the point on the skeleton of the input region having the smallest distance to the center of gravity of the input
region (°’ inner_center’).

convex hull outer_circle inner_circle rectanglel rectangle2 inner_rectanglel

el !

Figure 2.2: Common shapes to approximate a region.

A skeleton describes the medial axis of an input region and can be obtained by the operator skeleton. Further-
more, the regions can be processed by the operators sort_region, partition_dynamic, and rank_region.

B-14

Basic Tools

2.1.4 Extract Features

Having obtained the region that represents the object to measure, the features of the object, i.e., the actual mea-
surement results, can be extracted.

Several operators are provided to compute features like the area, position, orientation, or dimension of a region.
Some of them can be used as alternatives to the shape transformations described in the preceding section. Common
operators are, e.g.:

* area_center computes the area and the position of the center of an arbitrarily shaped region,

* smallest_rectanglel and smallest_rectangle2 compute the smallest enclosing rectangle. In partic-
ular, smallest_rectanglel computes the corner coordinates for the smallest surrounding rectangle being
parallel to the image coordinate axes, and smallest_rectangle2 computes the radii (half lengths), posi-
tion, and orientation of the smallest enclosing rectangle with arbitrary orientation.

e inner_rectanglel computes the corner coordinates for the largest rectangle parallel to the coordinate axes
that fits completely into the region,

e inner_circle determines the radius and position of the largest circle fitting into the region,
* diameter_region obtains the maximum distance between two boundary points of a region, and

* orientation_region is used to get the orientation of a region.

Note that orientation_region and smallest_rectangle2 both compute the orientation of the object, but the
results of both can differ, depending on the shape of the object (see section 3.1.2 on page 29).

If you prefer to work with contour processing instead of region processing, and a pixel-precise measuring is
sufficient, you can also start with region processing and at any time convert the regions into contours with
gen_contour_region_x1d. The contours then can be used for measuring purposes as described in the following
section. A conversion may be necessary, e.g., if an object describes a simple shape but has large deformations, so
that the contour processing approach described in section 2.2.4 on page 19 is better suited. For the advantages of
contour processing see section 3.2 on page 31.

2.2 Contour Processing

Contour processing is suitable for high precision measuring, for objects that are not represented as homogeneous
regions in the image but by clear gray value or color transitions (edges), or for object parts that are not bordered
by a closed contour. The first steps of a contour processing consist of

* the creation of contours (see section 2.2.1), and

¢ the selection of relevant contours (see section 2.2.2).

Then, the evaluation of the contours follows. For this, HALCON provides different approaches. If you know the
shape of the object parts you want to measure, a common approach is

* the segmentation of complex contours into contour segments of predefined shapes (section 2.2.3) and

¢ the extraction of the parameters of shape primitives that approximate the contours or contour segments
(section 2.2.4).

If you have no knowledge about the object’s shape or the shapes cannot be approximated by a simple shape like a
line, circle, ellipse, or rectangle without loosing essential information, HALCON provides operators similar to the
ones introduced for the region processing, i.e., operators for

* the extraction of general contour features like the diameter, length, or orientation of contours of unknown
shape (section 2.2.5).

In some cases, contour processing is needed not for precision requirements but for one of its other advantages,
which are introduced in section 3.2 on page 31. If a pixel-precise measuring is sufficient and the contour processing
is needed only for a part of the measuring process, you can afterwards switch to the faster region processing. To
do so, you can transform the contours into regions using the operator gen_region_contour_x1d.

2.2 Contour Processing

B-15

2.2.1 Create Contours

Contour processing starts with the creation of contours. The common way to obtain contours is to extract edges.
Edges are transitions between dark and light areas in an image and can be mathematically determined by computing
the image gradient, which can also be represented as edge amplitude and edge direction. By selecting pixels with
a high edge amplitude or a specific edge direction, contours between areas can be extracted. This can be done in
various ways and with varying precision.

2.2.1.1 Pixel-Precise Edges and Lines

If a pixel-precise edge extraction is sufficient, an edge filter can be applied (see also Solution Guide I, chapter 6.1
on page 55). It leads to one or two edge images, for which the edge regions can be extracted by selecting the pixels
with a given minimum edge amplitude using a threshold operator. To get edges with a thickness of one pixel, the
obtained regions have to be thinned, e.g., by using the operator skeleton. Common pixel-precise edge filters are
the operator sobel_amp, which is fast, and edges_image, which is not that fast but already includes a hysteresis
threshold and a thinning and leads to more accurate results than sobel_amp. edges_image and also its equivalent
for color images, edges_color, can also be applied with the parameter Filter set to *sobel_fast’. Then, itis
fast as well, but this parameter is recommended only for images with little noise or texture and sharp edges.

Besides edges, you can extract also lines that are built by thin structures on a contrasting background. In contrast
to edges or the XLD lines that are obtained by a line fitting as described in section 2.2.4 on page 19, they have
a certain (not necessarily constant) width. A common filter for these lines is bandpass_image, which is again
applied in combination with a threshold and a thinning.

For edge filters, after applying the filter, threshold, and thinning, the result typically is transformed into XLD
contours. With this approach, a broad range of further processing methods is available. For the transformation of
the thinned edge regions into contours, e.g., the operator gen_contours_skeleton_x1d is provided. Figure 2.3
(left) shows a pixel-precise edge obtained with edges_image.

2.2.1.2 Subpixel-Precise Edges and Lines

If a pixel-precise extraction is not sufficient, operators for the subpixel-precise edge and line extraction can be
applied (see Solution Guide I, chapter 7 on page 63). These immediately return XLD contours. Common operators
to extract subpixel-precise edges are edges_sub_pix for the general edge extraction, edges_color_sub_pix
for extracting edges in color images, and zero_crossing_sub_pix for extracting zero crossings in an image, or
respectively, to extract edges in Laplace-filtered images. Common operators for the extraction of subpixel-precise
lines, i.e., thin linear structures with a certain (not necessarily constant) width, are 1ines_gauss for the general
line extraction, 1ines_facet for extracting lines using a facet model, and 1lines_color for extracting lines in
color images. Figure 2.3 (right) shows a subpixel-precise edge obtained with edges_sub_pix.

pixel precise edges subpixel precise edges

Figure 2.3: Edge extracted: (left) pixel-precise, (right) subpixel-precise.

B-16

Basic Tools

2.2.1.3 Speed up the Contour Extraction

The subpixel-precise approaches are often slower than the pixel-precise approaches. To speed up the subpixel-
precise edge extraction, it is recommended to apply it only to a small region of interest (ROI). To obtain a suitable
ROl you can, e.g., determine the region enclosed by the contour with a thresholding (e.g., using fast_threshold).
The returned region then must be reduced to its boundary by the operator boundary and possibly clipped by
clip_region_rel. With a morphological operator, e.g., dilation_circle, the region is expanded by a small
amount, the image is reduced to the returned region by reduce_domain, and the reduced image is used as an
ROI. The ROI builds the search space for the subpixel-precise edge extraction (see figure 2.4). One of the various
HDevelop examples illustrating this proceeding is described in section 4.3 on page 37.

ol
L

d) e) f)

Figure 2.4: Creation of ROI for subpixel-precise edge extraction: a) original image, b) pixel-precise edge extraction,
c¢) boundary for the edge region, d) dilation of the region, e) reduced domain (ROI), f) subpixel-precise
edge extraction within the ROL.

2.2.1.4 Subpixel-Precise Thresholding

Another fast way to extract contours is provided by the subpixel-precise thresholding using the operator thresh-
old_sub_pix, which can be applied in real time to a whole image. It is a thresholding operator similar to the ones
used for the region processing (see section 2.1.2 on page 12), but in contrast to them it does not result in a closed
region but in subpixel-precise contours describing the border or parts of a border of the region. Thus, in contrast
to the threshold operators introduced for the region processing the returned contours need not be closed, multiple
contours can be obtained for the same region, and junctions between contours are possible (see image figure 2.5).
Like for the thresholding operators used for a region processing, you can search for a suitable threshold using, e.g.,
the online Gray Histogram inspection in HDevelop (with Display set to ’threshold’), or obtain information
about the gray value distribution of the image by the operators gray_histo, histo_to_thresh, and intensity.

2.2.2 Get Relevant Contours

If the creation of the contours led to more contours than needed for the further processing, there are means to
reduce the set of extracted contours to a set of contours relevant for the specific measuring task.

2.2 Contour Processing

B-17

Figure 2.5: Contours obtained by threshold_sub_pix. The border of a region consists of different, not necessarily
closed contours. Junctions are possible.

2.2.2.1 Suppress Irrelevant Contours

You can, e.g., suppress irrelevant contours by selecting only those contours fulfilling specific constraints. For
example, the operator select_shape_x1d can be used to select closed contours with a specific shape feature
concerning, e.g., the contour’s convexity, circularity, or area. Almost 30 different shape features are available,
which are listed in the corresponding part of the Reference Manual. A similar operator for the selection of specific
contours is select_contours_x1d. It can be used to select open and closed contours according to typical line
features like length, curvature, or direction. The operator select_x1d_point can be used in combination with
mouse functions to interactively select contours. One of the various examples how to select significant features is
given in section 4.11 on page 54.

2.2.2.2 Combine Contours

When having several contours that approximate the same object part, the number of segments can further be
reduced by a contour merging. Suitable operators are provided for the case that the contours

¢ lie approximately on the same line (union_collinear_contours_x1d),

* on the same circle (union_cocircular_contours_x1d, see figure 2.6),

e are adjacent (union_adjacent_contours_xld), or

e are cotangential (union_cotangential_contours_x1d).

One of the examples applying a contour merging is described in section 4.9 on page 49.

For closed contours or polygons, you can also use set-theoretical operators to combine the enclosed regions of
different closed contours or polygons. This is similar to the approach described for the region processing in
section 2.1.3 on page 12. Available operators are

* intersection_closed_contours_xld and intersection_closed_polygons_x1d for the calculation
of the intersection of regions that are enclosed by closed contours or polygons,

e difference_closed_contours_x1d and difference_closed_polygons_x1d for the calculation of
the difference between regions that are enclosed by closed contours or polygons,

e symm_difference_closed_contours_xld and symm_difference_closed_polygons_x1d for the cal-
culation of the symmetric difference between regions that are enclosed by closed contours or polygons, and

e union2_closed_contours_x1d and union2_closed_polygons_x1d for merging regions that are en-
closed by closed contours or polygons.

B-18

Basic Tools

c) d)

Figure 2.6: Get relevant contours: a) original image, b) subpixel-precise edges, c¢) selected contours with minimum
length, d) cocircular contours merged.

2.2.2.3 Simplify Contours
Further, you can simplify contours by directly transforming them into shape primitives, which is similar to the

approach described for the region processing in section 2.1.3 on page 12, but now works on contours instead of
regions. With shape_trans_x1d you can transform a contour into

* the smallest enclosing circle,

the ellipse having the same moments,
¢ the convex hull,

« or the smallest enclosing rectangle (either parallel to the coordinate axis or with arbitrary orientation) (see
figure 2.7).

2.2.3 Segment Contours

The obtained contours typically have more or less complex shapes. If a contour consists of elements of known
shape, e.g., straight lines or circular arcs, a segmentation of the contour into these less complex contours helps to
make the investigation of the object easier, as now each segment can be measured individually. For the measuring,
primitive shapes like lines or circles are fitted to the segments and their parameters, e.g., the diameter of a circle
or the length of a line, can be obtained (see next section). Available shape primitives for a shape fitting comprise
lines, circles, ellipses, and rectangles.

For the contour segmentation the operator segment_contours_x1d can be applied. Dependent on the parame-
ters you choose, a contour can be segmented into linear segments (see figure 2.8), linear and circular segments,
or linear and elliptic segments. The information by which shape each individual segment is approximated is
stored in the attribute ’cont_approx’. If you need only straight line segments, you can alternatively use the
operator gen_polygons_x1d instead. To get the individual line segments of the polygon, apply the operator
split_contours_xld.

2.2 Contour Processing

B-19

Figure 2.7: Contours transformed into approximating shapes: a) original image, b) extracted contours after suppres-
sion of irrelevant contours, ¢) contours transformed into ellipses with the same moments, d) contours
transformed into their smallest enclosing circles, €) contours transformed into their convex hulls, and f)
contours transformed into their smallest enclosing rectangles with arbitrary orientation.

Figure 2.8: Segment a contour: (left) original image with edges, (right) segmented contour.

2.2.4 Extract Features of Contour Segments by Approximating them by known
Shapes

The common step after the selection and possibly a segmentation is to fit shape primitives to the contours or
contour segments to get their specific shape parameters. The available shape primitives are lines, circles, ellipses,
and rectangles. The obtained features may be, e.g., the end points of the lines or the centers and radii of the circles.

If you have applied a segmentation in a preceding step, for each segment the value of ’cont_approx’, i.e.,
the shape of the segment, can be queried with the operator get_contour_global_attrib_x1d. Depending on
its value, the best-suited shape primitive can be fitted into the contour segment using the corresponding fitting
approach:

e For linear segments (’cont_approx’ = -1), fit_line_contour_x1d gets the parameters of each line
segment, e.g., the coordinates for both end points.

* For circular arcs (’ cont_approx’ = 1), fit_circle_contour_x1d and

&
8
™~
9
[7]
©
1]

B-20

Basic Tools

e for elliptic arcs (’ cont_approx’ =0), fit_ellipse_contour_x1d are used to compute the center posi-
tions, the radii, and the parts of the circles or ellipses that are covered by the contour segments (determined
by the angles of the start and end points).

* Rectangles consist either of a pure (unsegmented) contour or of linear contours that have been merged,
e.g., by union_adjacent_contours_x1d. For them, the operator fit_rectangle2_contour_x1d is
provided.

Examples for the application of the fitting operators are described, e.g., in section 4.6 on page 44 for lines, sec-
tion 4.10 on page 52 for circles, and section 4.9 on page 49 for rectangles.

With the obtained parameters the corresponding contour can be generated for a visualization or a further process-
ing. Lines can be generated with gen_contour_polygon_x1d, circles with gen_circle_contour_x1d, ellipses
with gen_ellipse_contour_x1d, and rectangles with gen_rectangle2_contour_x1d. For the visualization,
common visualization operators like dev_display are used. Figure 2.9 shows an example for fitting circles into
circular contours and displaying their parameters.

a) b)

R=286.975

R=163.1 R=261 491

i =

R=362 14 &%ﬁn €93
rd

R=358.297

c) d)

Figure 2.9: Fit circles to circular contours: a) original image, b) contours after suppression of irrelevant contours c)
circles fitted into the contours d) visualization of radius R for each circle.

2.2.5 Extract Features of Contours Without Knowing Their Shapes

If the object to investigate cannot be described by a predefined shape primitive, HALCON provides several op-
erators that compute general features of contours. Similar to the operators used for the feature extraction within
a region processing (see section 2.1.4 on page 14), features like orientation or area can be queried. Common
operators used for 2D measuring with contours are:

* area_center_x1d: area and center of gravity for the region enclosed by the contour or polygon, and the
order of the points along the boundary.

* diameter_x1d: the coordinates of the two extreme points of the contour having the maximum distance, and
the distance between them.

2.3 2D Metrology

B-21

e elliptic_axis_x1d: the two radii and the orientation of the ellipse having the same orientation and aspect
ratio as the contour.

* length_x1d: length of the contour or polygon.
* orientation_x1d: orientation of the contour.
e smallest_circle_x1d: center position and radius of the smallest enclosing circle.

* smallest_rectanglel_x1d: coordinates of the corners describing the smallest enclosing rectangle that is
parallel to the coordinate axis.

* smallest_rectangle2_x1d: center position, orientation, and the two radii (half lengths) of the smallest
enclosing rectangle with arbitrary orientation.

Some of the operators only work on contours that have no self intersections. Self intersections
are not always obvious as they can occur due to internal calculations of an operator, e.g., if an
open contour is closed for the needed operation (see figure 2.10). To check if a contour inter-
sects itself you can apply the operator test_self_intersection_x1d. If you face problems be-
cause of self intersections, you can also use the corresponding point-based operators. The avail-
able operators are area_center_points_xld, moments_points_xld, orientation_points_x1ld, ellip-
tic_axis_points_x1ld, eccentricity_points_x1d, and moments_any_points_x1d.

Figure 2.10: Self intersection: (left) curved contour, (right) self intersections occur because the contour is closed for
internal calculations of an operator.

2.3 2D Metrology

If you want to measure objects that are represented by simple shapes like circles, ellipses, rectangles, or lines, and
you have approximate knowledge about their positions, orientations, and dimensions, you can use 2D metrology
to determine the exact shape parameters.

In particular, the values of the initial shape parameters are refined by a measurement that is based on the exact
location of edges within so-called measure regions. These are rectangular regions that are evenly distributed along
the boundaries of the approximately known shapes. As shown in figure 2.11, for a single initial shape also more
than one refined instance may be returned.

The HDevelop example program %HALCONEXAMPLESY\hdevelop\2D-Metrology\
apply_metrology_model.hdev shows the basic steps of 2D metrology. First, a metrology model must
be created using create_metrology_model. In this model, all needed information related to the objects to
measure will be stored. To enable an efficient measurement, the size of the image in which the measurements will
be performed should be added to the model using the operator set_metrology_model_image_size.

read_image (Image, 'pads')

get_image_size (Image, Width, Height)

create_metrology_model (MetrologyHandle)
set_metrology_model_image_size (MetrologyHandle, Width, Height)

Then, the approximate values for the shapes of the objects in the image and some parameters that control the
measurement must be added. For each shape, depending on its geometric type, the following operators are used:

B-22

Basic Tools

Figure 2.11: Applying 2D metrology: (left) initial circle and measure regions; (right) three circle instances returned
by the measurement.

* add_metrology_object_circle_measure adds parameters of one or more circle(s), i.e., the coordinates
of the center point and the radius.

* add_metrology_object_ellipse_measure adds parameters of one or more ellipse(s), i.e., the coordi-
nates of the center point, the orientation of the main axis, and the size of the smaller and the larger half
axis.

* add_metrology_object_line_measure adds parameters of one or more line(s), i.e., the coordinates of
the start and end point.

* add_metrology_object_rectangle2_measure adds parameters of one or more rectangle(s), i.e., the
coordinates of the center point, the orientation of the main axis, and the size of the smaller and the larger
half axis.

* add_metrology_object_generic adds parameters of circles, ellipses, lines, and/or rectangles.

Note that you can change several parameters that control the measurement with the operator
set_metrology_object_param.

In the example program, values for a rectangular and a circular object are added.

add_metrology_object_rectangle2_measure (MetrologyHandle, RectangleInitRow, \
RectangleInitColumn, \
RectangleInitPhi, \
RectangleInitLengthl, \
RectangleInitLength2, \
RectangleTolerance, 5, .5, 1, [1, \
[1, MetrologyRectangleIndices)
add_metrology_object_circle_measure (MetrologyHandle, CircleInitRow, \
CircleInitColumn, CircleInitRadius, \
CircleRadiusTolerance, 5, 1.5, 2, [1, \
[1, MetrologyCircleIndices)

The actual measurement in the image is performed with the operator apply_metrology_model. The refined
shape parameters that result from the measurement can be accessed from the metrology model with the operator
get_metrology_object_result.

apply_metrology_model (Image, MetrologyHandle)

get_metrology_object_result (MetrologyHandle, MetrologyRectangleIndices, \
'all', 'result_type', 'all_param', \
RectangleParameter)

get_metrology_object_result (MetrologyHandle, MetrologyCirclelIndices, 'all', \
'result_type', 'all_param', CircleParameter)

2.3 2D Metrology

B-23

To inspect the contours that have been added to the metrology model, use
get_metrology_object_model_contour. To access the measure regions, which may be helpful when adjusting
the parameters that control the measurement, you can call the operator get_metrology_object_measures.

Besides the basic steps, several other steps may be performed. For details about 2D metrology, see the entry in the
Reference Manual for create_metrology_model.

2.3.1 Aligning the Metrology Model based on different methods

The HDevelop example program hdevelop/Applications/Measuring-2D/measure_stamping_part.hdev shows how
the metrology model can be aligned, e.g., if the object’s position varies from image to image.

It shows three different alignment methods:

 Using shape-based matching (see section 2.3.1.1)
» Using region processing (see section 2.3.1.2)

 Using a rigid transformation determined from point correspondences (see section 2.3.1.3)

The example allows you to select an alignment method by activating the desired line in the example code. As a
default, shape-based matching is selected.

AlignmentMode := 'shape-based matching'
* AlignmentMode := 'region processing'
* AlignmentMode := 'rigid transformation'

2.3.1.1 Shape-based matching

To find the objects to be measured in a new image, create and train a shape model. For more information about
shape-based matching and its parameters, see Solution Guide II-B and set_generic_shape_model_param.

create_generic_shape_model (ShapeModellID)
train_generic_shape_model (ImageReduced, ShapeModelID)

Now, set the reference coordinate system to the origin of the shape model region with
set_metrology_model_param. The origin of the shape model is the center of the input region used in
create_generic_shape_model and can be determined with area_center. By this, you are able to directly use
the results of find_generic_shape_model to align the metrology model.

area_center (ModelRegion, Area, RowModel, ColumnModel)
set_metrology_model_param (MetrologyHandle, 'reference_system', [RowModel, \
ColumnModel,0])

To inspect the contours that have been added to the metrology model, use
get_metrology_object_model_contour. Note, that they now match the shape model contours returned
by get_generic_shape_model_object.

In the online phase, the metrology model can be aligned with align_metrology_model. This opera-
tor aligns the metrology model using the positions and rotation angles which are obtained by the operator
find_generic_shape_model and retrieved by the operator get_generic_shape_model_result (see Solu-
tion Guide II-B, section 2.5.3.2 on page 35 for further information about alignment).

find_generic_shape_model (CurrentImage, ShapeModelID, MatchResultID, \
NumMatchResult)

get_generic_shape_model_result (MatchResultID, 'all', 'angle', AngleAlign)

align_metrology_model (MetrologyHandle, RowAlign, ColumnAlign, AngleAlign)

Finally, you can perform the actual measurement with apply_metrology_model.

apply_metrology_model (CurrentImage, MetrologyHandle)

B-24

Basic Tools

2.3.1.2 Region processing

The alignment can also be performed via region processing. In this case, we use area_center and orienta-
tion_region to determine the reference position of the segmented reference object.

area_center (OriginalRegion, Area, RowOrig, ColumnOrig)

orientation_region (OriginalRegion, AngleOrig)

set_metrology_model_param (MetrologyHandle, 'reference_system', [RowOrig, \
ColumnOrig,AngleOrigl)

In the online phase, first segment the object the same way as in the reference image and determine its position and
orientation. If the reference system of the metrology model has been set, the result can directly be used for the
alignment with align_metrology_model.

area_center (CurrentRegion, Area, RowAlign, ColumnAlign)
orientation_region (CurrentRegion, AngleAlign)
align_metrology_model (MetrologyHandle, RowAlign, ColumnAlign, AngleAlign)

Finally, you can perform the actual measurement with apply_metrology_model.

apply_metrology_model (CurrentImage, MetrologyHandle)

2.3.1.3 Rigid transformation from point correspondences

If it is possible to robustly detect correlated reference points in the reference image as well as in the online images,
it is possible to calculate a rigid transformation from these point correspondences and use it for alignment.

First, extract the reference points for the alignment. In the example, the procedure extract_reference_points
is used for this purpose.

extract_reference_points (Image, RowReference, ColumnReference)

In this case, no reference system has to be set.

In the online phase, extract the reference points and determine the rigid transformation parameters using the op-
erators vector_to_rigid and hom_mat2d_to_affine_par. Note that you have to take care that corresponding
points have the same indices in RowReference, ColumnReference, RowExtracted, and ColumnExtracted.
The results are then used for the alignment with align_metrology_model.

extract_reference_points (CurrentImage, RowExtracted, ColumnExtracted)
vector_to_rigid (RowReference, ColumnReference, RowExtracted, \
ColumnExtracted, HomMat2D)
hom_mat2d_to_affine_par (HomMat2D, Sx, Sy, AngleAlign, Theta, RowAlign, \
ColumnAlign)
align_metrology_model (MetrologyHandle, RowAlign, ColumnAlign, AngleAlign)

Finally, you can perform the actual measurement with apply_metrology_model.

apply_metrology_model (CurrentImage, MetrologyHandle)

2.3.2 Querying Results
The HDevelop example program hdevelop/Applications/Measuring-2D/measure_stamping_part.hdev also shows
how to query results.

The edge points that were actually used to fit the geometric forms can be visualized with
get_metrology_object_result.

2.4 Geometric Operations

B-25

get_metrology_object_result (MetrologyHandle, 'all', 'all', 'used_edges', \
'row', UsedRow)
get_metrology_object_result (MetrologyHandle, 'all', 'all', 'used_edges', \

'column', UsedColumn)
gen_cross_contour_x1d (UsedEdges, UsedRow, UsedColumn, 10, rad(45))

2.4 Geometric Operations

HALCON provides a selection of operators for geometric operations to calculate the relation between elements
like points, lines, line segments, contours, or regions. Points can be determined by several point operators, e.g.,
points_foerstner, or by the intersection of lines. Lines, line segments, contours, and regions can be obtained as
described in section 2.1 on page 11 and section 2.2 on page 14. The relations between the individual elements can
be calculated by several operators. Most of the operators are constructed to calculate the distance relation between
the elements. The operators for the distance relations are summarized in the following list:

Line Segment

Contour

distance_ps

distance_pc

distance_sl

distance_lc

distance_ss

distance_sc

distance_sc

distance_cc

distance_cc_min

distance_sr

Point Line

Point distance_pp | distance_pl

Line distance_pl | —

Line Segment | distance_ps | distance_sl

Contour distance_pc | distance_lc

Region distance_pr | distance_lr
Region

Point distance_pr

Line distance_lr

Line Segment | distance_sr

Contour -

Region distance_rr_min
distance_rr_min_dil

Further operators for geometric operations are provided, which can be used to calculate, e.g.,

¢ the angle between two lines: angle_11,

* the angle between a line and the vertical axis: angle_1x,

* apoint on an ellipse corresponding to a specific angle: get_points_ellipse,

¢ the intersection of two lines: intersection_lines, and

* the projection of a point onto a line: projection_pl.

B-26 Basic Tools

Tool Selection

B-27

Chapter 3

Tool Selection

Because many tools are available, it is not obvious which tool to use in which situation. Section 3.1 guides you
from the feature you want to extract and the object’s appearance in the image to the appropriate tool to use. In
section 3.2, additionally the two most important tools, region processing and contour processing, are compared.
Practical guidance is provided in section 4 by a selection of HDevelop example programs that solve common
measuring tasks.

3.1 From the Feature to the Tool

If you have no special requirements like precision or speed, often several measuring approaches are available to
obtain the same feature as result. The graph in figure 3.1 leads you from a single feature you want to measure
and the appearance of the object in the image to the part of section 2 that describes the basic tools suited best for
your task. If you have specific requirements like precision or speed, you should additionally consider the different
characteristics of region processing and contour processing discussed in section 3.2 on page 31.

B-28

Tool Selection

Measure the
dimension or area of
an object

Object represented by
regions of similar gray
value, color, or texture

Region Processing
(section 2.1 on page

11)

Objects represented by
clear-cut edges,
contours can be
decomposed into
simple shapes

Contour Processing
(section 2.2 on page
14)

Objects have simple
shapes with shape
parameters that are
approximately known

Measure the
orientation, position,
or number of objects

2D Metrology
(section 2.3 on page
21)

Objects all have the
same, complex shape

Matching (Solution
Guide I, chapter 10 on
page 89)

Objects are edges
perpendicular to a line
or an arc

1D Measuring
(Solution Guide I,
chapter 5 on page 45),
or Solution Guide
I-A

Measure an angle or
distance

between objects or
object parts

l

Calculate the angle or
distance from their
orientations or
positions

between segments like
positions, edges, or
regions

Geometric Operations
(section 2.4 on page
25)

Figure 3.1: From the feature to measure to the corresponding basics section.

In most applications, it is not sufficient to obtain a single feature from an image since many features are needed
to obtain the final feature that is searched for. Thus, dependent on the specific task and the characteristics of the
object the basic tools are combined in different ways. The decision which tool to use does not only depend on the
appearance of the object and the special requirements concerning precision or speed, but also on the interdepen-
dencies of the several tasks of an application and therefore also on the features you have already obtained during a
preceding step of your program. Because there is a huge amount of influences, this guide can not be all-embracing,
but hopefully conveys to you a feeling for the available tools.

Therefore, we shortly summarize which tools or approaches are common to obtain the different object features.
Most of the corresponding examples, which can be used as practical guidance, are provided in section 4 on page
35.

3.1 From the Feature to the Tool

B-29

3.1.1 Area

The area of an object is in most cases obtained by the operator area_center, i.e., via a region processing (see,
e.g., the example in section 4.1 on page 35).

If a subpixel-precise measuring requires contour processing, you can use the corresponding operator
area_center_xld or area_center_points_x1d (see example in section 5.2 on page 68) instead.

Be aware that when computing the area of a region, possible holes in the region are considered, whereas when
computing the area of a contour, the whole area enclosed by the contour is obtained. In the latter case, you
therefore have to extract also the contours of the holes, get their areas, and subtract them from the area enclosed
by the outer contour.

The mentioned operators were introduced in section 2.1.4 on page 14 for regions and in section 2.2.5 on page 20
for contours.

In addition, the operator area_holes calculates the area of the holes in the input regions.

3.1.2 Orientation and Angle

For the orientation of an arbitrary object, typically the operator orientation_region (see, e.g., the example in
section 4.1 on page 35) is used and can be replaced for contours by the corresponding operator orientation_x1d
(see example in section 4.4 on page 41).

The operators elliptic_axis and elliptic_axis_x1d compute the orientation and radii of the ellipse having
the same moments as the input region or contour, respectively.

For very small symmetric objects, the operator elliptic_axis_gray is recommended (see example in sec-
tion 4.12 on page 56).

If you want to obtain the orientation and extents of the smallest enclosing rectangle of an object, you can deter-
mine them via smallest_rectangle?2 for regions (see also example in section 4.12 on page 56) and small-
est_rectangle2_x1d for contours.

The mentioned operators were introduced in section 2.1.4 on page 14 for regions and in section 2.2.5 on page 20
for contours.

Note that orientation_region and smallest_rectangle2 both determine the orientation of the object but
use different approaches. orientation_region is based on elliptic_axis and computes the orientation of the
ellipse that is equivalent to the object, whereas smallest_rectangle2 computes the orientation of the smallest
enclosing rectangle. Depending on the object’s shape, one of the operators may be more suitable than the other.
Figure 3.2 shows the character *L’> for which the orientation is determined by the equivalent ellipse and by the
smallest enclosing rectangle.

Figure 3.2: Orientation of (left) the equivalent ellipse or (right) the smallest enclosing rectangle.

Besides the different values for the orientation, the range of the returned values differs. orientation_region
returns the orientation in a range of -180° to 180°, whereas for smallest_rectangle2 the orientation is returned
in a range of -90° to 90°. Be aware, that the 360° range of orientation_region is reliable only for unambiguous
objects. For symmetric objects, the returned orientation may flip by 180°.

B-30

Tool Selection

If you fit a primitive shape to a contour or contour segment as described in section 2.2.4 on page 19, for elliptic
and rectangular contours also the orientation of the contour is returned by the corresponding fitting operator. An
example for obtaining the orientations of rectangles is shown in section 4.9 on page 49.

If you have a rather complex, but rigid shape, which you like to find in different images, template matching is
recommended to get the orientation of the object in each image. For further information about template matching,
read the Solution Guide I, chapter 10 on page 89.

If the angle between two objects is needed, you can obtain the orientation of both objects as described before and
compute the difference between them. If the angle between two lines or a line and the vertical axis is needed, the
operators introduced in section 2.4 on page 25, angle_11 and angle_1x, are suited (see example in section 4.8
on page 49).

3.1.3 Position

To get the position of an object, an extensive selection of possible approaches is available.

The center position of an arbitrary object can be obtained by region processing (see section 2.1.4 on page 14)
using area_center (see, e.g., the example in section 4.1 on page 35) or by contour processing (see section 2.2.5
on page 20) using the corresponding operator area_center_x1d or area_center_points_x1d (see example in
section 5.2 on page 68).

For very small symmetric objects, the operator area_center_gray is recommended (see example in section 4.12
on page 56).

If the objects can be split into primitive shapes like lines, circles, ellipses, or rectangles, and these primitives are
the objects of interest for the further investigation, fitting primitive shapes to the contours (see section 2.2.4 on
page 19) leads to the positions of their center points or, in case of a line fitting, their end points. In section 4.9 on
page 49, e.g., the fitting of rectangles to contours is described to obtain the position and orientation of rectangular
objects. The examples in section 4.10 on page 52 and section 4.11 on page 54 show the corresponding process for
fitting circles to circular contour segments.

If you have a rather complex, but rigid shape, which you like to find in different images, template matching is
recommended to get the position of the object in each image. For further information about template matching,
read the Solution Guide I, chapter 10 on page 89.

How to measure the positions of edges and the distances between them along a line or an arc that is approximately
perpendicular to them is briefly described in the Solution Guide I, chapter 5 on page 45. Details can be found in
the Solution Guide III-A.

If the position of a corner point of a contour is searched for, either point operators can be used (see section 2.4
on page 25), or lines, obtained by line fitting (see section 2.2.4 on page 19), are intersected using intersec-
tion_lines. Both approaches are used by the example in section 4.7 on page 47.

The intersection of lines can be applied also to get, e.g., the junction points of a grid (see example in section 4.6
on page 44). Additionally, contours or also regions can be intersected with other contours or regions to get the
positions of points of intersection.

3.1.4 Dimension and Distance

The dimension of objects can be obtained by a large variety of approaches, depending primarily on the shape of
the object.

For circular or elliptic contours or contour segments the radii and positions are usually obtained by fitting circles
or ellipses to the contours (see section 2.2.4 on page 19). Examples are shown in section 4.10 on page 52 and
section 4.11 on page 54.

If full circles and not only circular contour segments are given, you can also determine the radius and position of
the largest circle fitting into a region using inner_circle (see section 2.1.4 on page 14) or the smallest circle
enclosing a contour using smallest_circle or smallest_circle_x1d, respectively (see section 2.2.5 on page
20). Note that, however, the results are much more influenced by small distortions than the result obtained by circle
or ellipse fitting (see section 3.2).

3.2 Region Processing vs. Contour Processing

B-31

For rectangles, you can obtain the extents and positions either via rectangle fitting as introduced in section 2.2.4 on
page 19 (an example is described in section 4.9 on page 49), or you determine the smallest enclosing rectangles via
smallest_rectangle2 for regions (see section 2.1.4 on page 14) or smallest_rectangle2_x1d for contours
(see section 2.2.5 on page 20). The example in section 4.12 on page 56 shows how to determine the smallest
enclosing rectangle for the region of a ball grid array (BGA). The obtained half lengths of the rectangle are used
then to normalize the distances between the balls in the grid. Note that similar to the approaches for circular or
elliptic objects, the results for the smallest enclosing rectangles are more influenced by outliers than the result of a
rectangle fitting.

Many applications that aim to get the distance between objects or object parts extract suitable positions, e.g., the
intersection points of two intersecting lines, and use them to measure distances between them and another point,
line, line segment, contour, or region by a geometric operation (see section 2.4 on page 25). The example in
section 4.6 on page 44, e.g., intersects the lines of a grid to calculate the positions of its junctions, which then
could be used, e.g., to get the extent of the grid. Another example (section 4.7 on page 47) intersects lines to get
the positions of the corner points of a metal plate and afterwards calculates the distance between them and the
positions of the same points obtained by a point operator (for point operators see section 2.4 on page 25). The
maximum distance between a contour and its approximating line (regression line) is determined in the example in
section 4.3 on page 37.

How to measure the positions of edges and the distances between them along a line or an arc that is approximately
perpendicular to them is briefly described in the Solution Guide I, chapter 5 on page 45. Details can be found in
the Solution Guide I1I-A.

The width of an object can be obtained by different means, depending on the object. For example, the width of
thin lines like cables, rivers, or arteries are often obtained by 1ines_gauss as described in section 4.5 on page 43,
whereas the width of a strictly polygonal object is better obtained by calculating the distance between individual
lines or points via geometric operations, which are possibly applied after checking the lines for parallelism (see
example in section 4.4 on page 41). The width of an object may be also obtained via region processing, e.g., by
using the smallest enclosing rectangle or, if the object consists of jagged lines, orient the object and its region
parallel to the vertical axis and calculate the difference between the column coordinates of the region’s border in
each row to get the mean, minimum, and maximum width (see example in section 4.2 on page 36).

For objects with an arbitrary shape, region-based feature extraction, as described in section 2.1.4 on page 14, or
the corresponding contour-based operators introduced in section 2.2.5 on page 20 can be used to get some general
features of their region or contour. The example in section 5.2 on page 68, e.g., uses the operator length_x1d to
compute the length of a contour representing a scratch in an anodized aluminum surface.

3.1.5 Number of Objects

To get the number of objects, the common method is to work with tuples and to count their elements. In HDevelop,
if a tuple contains iconic data, e.g., regions or contours, you can query the number of elements using the operator
count_obj. If the tuple contains control data, e.g., the numeric results obtained for the rows or columns of a set
of positions, you can query the number of elements via the corresponding HDevelop operation (Ituplel) inside the
operator assign. Note also that the indices of numerical tuples do not correspond to the indices of the iconic
tuples. Numerical tuples start with O and iconic tuples start with 1. For more information about the HDevelop
syntax related to tuples, see the HDevelop User’s Guide, section 8.5.3 on page 256.

The next section goes deeper into the main differences between region processing and contour processing.

3.2 Region Processing vs. Contour Processing

The basic tools needed for 2D measuring are region processing and contour processing. Both can be used to get
the area, orientation, position, dimension, or number of objects. This section helps you decide which approach is
suited best for your task. For this, the appearance of the object in the image is taken into account. The following
table summarizes the main differences between both tools. Afterwards, the individual topics are explained in more
detail.

B-32

Tool Selection

Region Processing

Contour Processing

a) | pixel-precise

pixel- or subpixel-precise

b) | fast

not as fast as region processing

¢) | works on closed contours

works on open and closed contours

d) | outliers strongly influence the result of a

outliers can be compensated

shape approximation
e) | gray-value behavior of object may not change
f) | not sensitive to bad contrast

gray-value behavior of object may change
sensitive to bad contrast

a) The methods belonging to region processing can be applied only with pixel precision. Therefore, the methods
are rather fast and easy to apply. For contour processing both pixel- as well as subpixel-precise methods are
provided. The speed of an application varies depending on the used operators.

b) Region processing is not as precise, but in most cases significantly faster than contour processing. The HDevelop
program %HALCONEXAMPLESY\solution_guide\2d_measuring\measure_metal_part_extended.hdev ex-
tracts an object and its area, center position, and orientation using region processing on one hand and contour
processing on the other hand. For the region processing, the operators threshold, area_center and orien-
tation_region are applied. The contour processing is preceded by the creation of an ROI to speed up the edge
extraction. For this, the operators threshold, boundary, and reduce_domain are used. The actual contour
processing then consists of the operators edges_sub_pix, area_center_x1d and orientation_x1d. For the
contour processing, the areas of the holes of the metal plate have to be subtracted to get the actual area of the plate.
Figure 3.3 shows the run time needed for both approaches. The region processing is significantly faster.

Region Processing Time: 0.78 ms

Center Row: 241.04 Center Column: 373.95

Area: 10190 pixels Orientation: -0.43 rad

Contour Pro sing Time: 53.3 ms

Center Row: 244 .2 Center Column:

Orientation: -0.43 rad

Area: 10218.6 pix

Figure 3.3: With region processing the extraction of area, center, and orientation is significantly faster than with
contour processing.

¢) Region processing only works for closed areas. For open contours, e.g., if only parts of the border of an object
are visible or only a segment of an object is subject to the further investigation, contour processing is needed (see

figure 3.4).

select circular fit circle to open
segment contour segment

Figure 3.4: Open contours, including single segments of an object’s border, can only be handled by contour pro-
cessing.

d) Fitting a primitive shape to a region, e.g., its enclosing circle, is far more influenced by outliers of the object’s

3.2 Region Processing vs. Contour Processing

B-33

contour than the corresponding contour processing. In many cases, for region processing small gaps or thin pro-
trusions can be eliminated by the right preprocessing steps, e.g., using an opening or closing. But large gaps or
protrusions are kept and therefore influence and maybe falsify the feature extraction as illustrated in figure 3.5.
There, the result of a shape approximation via region processing deviates strongly from the best fitting circle that
can be obtained by a contour processing.

Region processing Contour processing
. . . fit circle to
l inner circle l outer circle l
segments

@,

Figure 3.5: A circle fitting via contour processing is better suited to compensate outliers of the object’s border than
a circle approximation via region processing.

O

e) With region processing, regions are extracted as regions of similar gray value, color, or texture. A region can
be defined, e.g., as a connected region of gray values that are brighter than a specified threshold. Thus, for region
processing the object to measure must consist of a region that fulfills the constraint within its entire area. In some
cases, there are means to adapt to changing gray values, e.g., by a gray-value scaling. Here, the image is scaled
to another gray-value range so that, e.g., differences to a reference region are minimized. For contour processing
only the edges, i.e., the transitions between light and dark, are needed to extract an object. As long as the discrete
transition is visible, it does not matter whether the gray-value or color behavior changes inside the object.

f) Region processing is more robust to bad contrast than a contour processing, because small gray value differences
can nevertheless be separated by a suitable threshold, whereas a reliable edge extraction needs clear transitions
between areas of different gray value or color.

The following section provides you with a comprehensive collection of example applications that solve different
tasks and can be used as a guide for your applications.

B-34 Tool Selection

Examples for Practical Guidance

B-35

Chapter 4

Examples for Practical Guidance

The previous sections described theoretically how to use several tools provided by HALCON. Since every mea-
suring task is unique, different influences must be considered for each special case. The pure theory may not be
sufficient to get a feeling for choosing the right tool for a specific task. To give you also practical guidance, the
following sections describe a collection of examples solving common measuring tasks.

4.1 Rotate Image and Region (2D Transformation)

For many measuring tasks, it is useful to align the object of interest parallel to the coordinate axis of the image. If
the object cannot be aligned already at the image acquisition, the image or the extracted regions must be rotated by
image processing. A rotation as well as a translation or a scaling can be realized by an affine 2D transformation,
which is easily applied with HALCON.

The HDevelop program %HALCONEXAMPLESY\solution_guide\2d_measuring\measure_screw.hdev mea-
sures different dimension-related features of a screw. The image of the screw is acquired using a back light to
get a good contrast between fore- and background. For the approach described in section 4.2, piecewise distance
measuring is needed to obtain the minimum, maximum, and mean width of the screw. If the screw is vertical, the
measuring can be applied easily row by row. Otherwise, the calculations become more complex. Thus, the first
task of the program is to rotate the region of the screw so that it becomes vertical.

Region (transformed)

Figure 4.1: Affine 2D transformation: (left) original image, (right) rotated region.

The necessary steps for the rotation comprise

* the determination of the parameters for the rotation,

* the creation of a homogeneous transformation matrix, and

B-36

Examples for Practical Guidance

* the transformation of the region.
Step 1: Determine parameters for the rotation

threshold (Image, Region, 0, 100)
orientation_region (Region, OrientationRegion)
area_center (Region, Area, RowCenter, ColumnCenter)

Before applying a 2D transformation, the parameters for the transformation must be determined. Here, the region of
the object is extracted using threshold and the orientation of the region is determined via orientation_region.
The orientation intended for the following measuring is 90°. As center for the rotation we choose the center position
of the region, which we obtain with area_center. Note that because of the approximately symmetrical shape of
the screw, the screw can be twisted by 180°, but for the described task it is not important at which side of the screw
we start to measure.

Step 2: Create the homogeneous transformation matrix

vector_angle_to_rigid (RowCenter, ColumnCenter, OrientationRegion, \
RowCenter, ColumnCenter, rad(90), HomMat2DRotate)

Now, vector_angle_to_rigid is applied. The operator creates a homogeneous transformation matrix for a si-
multaneous rotation and translation. Here, only a rotation is applied, i.e., the center point is the same for the original
and the transformed region and only the angle is changing from the original orientation to the vertical direction.
An additional translation is recommended, e.g., if similar objects in several images have to be placed in the same
position so that a direct comparison between them is possible. Another need for a translation occurs if the object
or parts of it moved out of the image because of the rotation. Alternatively to vector_angle_to_rigid, you can
also create a homogeneous transformation matrix for the identical 2D transformation by hom_mat2d_identity
and add a rotation and a translation to it by hom_mat2d_rotate and hom_mat2d_translate, respectively. Fur-
thermore, if needed, also a scaling can be added to the homogeneous transformation matrix by hom_mat2d_scale,
but you have to consider carefully that a scaling significantly influences the absolute values obtained by the mea-
suring. To compensate this, you can afterwards transform the measurement results back to the original dimension
by applying the inverse transformation matrix to them.

Step 3: Transform region

affine_trans_region (Region, RegionAffineTrans, HomMat2DRotate, \
'nearest_neighbor')

The actual transformation of the region is realized by the operator affine_trans_region (see figure 4.1). The
rotated region is now used for the measuring task described in the next section.

4.2 Get Width of Screw Thread

The first measuring approach of the HDevelop program %HALCONEXAMPLESY\solution_guide\
2d_measuring\measure_screw.hdev measures the minimum, maximum, and mean width of a screw
thread. For this, we use the vertical region of the screw obtained in section 4.1 and measure the difference between
the column coordinates of the region’s border in each row.

The general steps for this task comprise

* the extraction of the width of the object in each row and

¢ the calculation of the mean, minimum, and maximum width.
Step 1: Get object width for each row

closing_circle (RegionAffineTrans, RegionToProcess, 4.5)

get_region_runs (RegionToProcess, RowRegionRuns, ColumnBegin, ColumnEnd)
NumberLines := |RowRegionRuns|

ColumnBeginSelected := ColumnBegin[90:NumberLines - 90]
ColumnEndSelected := ColumnEnd[90:NumberLines - 90]

Diameter := ColumnEndSelected - ColumnBeginSelected + 1

4.3 Get Deviation of a Contour from a Straight Line

B-37

Region (transformed) Width of object

per row (between

the white lines):

mean width: 238.679 pixels
minimum width: 232 pixels

maximum width: 245 pixels

Figure 4.2: Between the two white lines for each row, the distance is measured via a region processing.

The operator get_region_runs examines a region row by row. In particular, it returns three tuples, one containing
the row coordinates of the region and two containing the column coordinates where the region begins and ends
in the corresponding rows (seen from left to right). The difference between the two tuples containing column
coordinates results in a tuple containing the widths of the object for each row. Note that this proceeding works
only for regions having exactly one start and one end point per row. Thus, before applying get_region_runs,
small gaps that lead to more than one start and end point are eliminated by a closing using closing_circle.

Step 2: Calculate mean, minimum, and maximum width

meanDiameter := mean(Diameter)
minDiameter := min(Diameter)

The tuple containing the widths of the object in each row are used now to calculate the mean, minimum, and
maximum horizontal distance of the object (see figure 4.2).

In this approach, the column coordinates of the screw’s border, which are used to calculate the horizontal distance in
each row, are obtained by region processing. Alternatively, contour points can be obtained by a contour processing
and their coordinates can be used for the width calculation. How to obtain contour points is, e.g., described in
section 4.3 for the two thread edges EdgeContour0 and EdgeContourl.

4.3 Get Deviation of a Contour from a Straight Line

The second measuring approach in the HDevelop program %HALCONEXAMPLESY\solution_guide\
2d_measuring\measure_screw.hdev uses contour processing to measure the deviations of the thread edges
from their approximating straight lines, the so-called regression lines.

Individual points on the thread edges alternatively can be obtained by region processing, e.g., using the operator
get_region_points, but for the calculation of the regression lines, a contour processing is necessary. The general
steps applied here comprise

¢ the creation of an ROI,

* the extraction and alignment of contours,

* the determination of regression lines,

* the extraction of the contour points of the thread edges,

* the calculation of the horizontal distances between the thread edges and the regression lines, and

¢ the visualization of the result in a zoom window.

B-38 Examples for Practical Guidance

Figure 4.3: Measure the deviation of the contours from their regression lines: (left) contours of the thread edges and
their regression lines, (right) visualization of deviation per row in a zoom window.

Step 1: Create ROI

boundary (Region, RegionBorder, 'inner_filled')
dilation_circle (RegionBorder, RegionDilation, 7.5)
reduce_domain (Image, RegionDilation, ImageReduced)

First, a region processing is used to create an ROI for the following contour processing. For this, we reduce the
original region of the screw to its border by the operator boundary and use the morphological operator dila-
tion_circle to enlarge it. The domain is reduced to the enlarged region by reduce_domain (see figure 4.4).

Figure 4.4: ROI for the subpixel-precise edge extraction.

Step 2: Extract and transform contours

sigma := 3

derivate_gauss (ImageReduced, DerivGauss, sigma, 'laplace')

zero_crossing_sub_pix (DerivGauss, Edges)

select_contours_x1d (Edges, SelectedEdges, 'contour_length', 3000, 99999, \
-0.5, 0.5)

The ROI is now used as search space for the contour processing that starts with a subpixel-precise edge extraction.
In many cases, the operator edges_sub_pix is the first choice when extracting edges. Here, it has the disadvantage
that it works on the first derivative so that the curves are flattened slightly. Because we need the outer parts of the

4.3 Get Deviation of a Contour from a Straight Line

B-39

contour, a curve flattening must be avoided. Thus, we use a Laplace filter, which leads to less smooth edges but
matches the turning parts of the contour. The Laplace filter is applied using the operator derivate_gauss with
the parameter laplace. The operator zero_crossing_subpix then returns the edge contours. From these, we
select the contours with a minimum size using select_contours_x1d.

The operator affine_trans_contour_x1d then transforms the contours using the same homogeneous transfor-
mation matrix as used for the transformation of the region obtained in section 4.1 on page 35 (see figure 4.5).

affine_trans_contour_xld (SelectedEdges, ContoursAffineTrans, \
HomMat2DRotate)

Figure 4.5: Extracted and transformed contours of the screw.

With smallest_rectanglel_x1d and clip_contours_x1d, the now vertical contour is clipped to get that part
of the screw’s border that contains the two separated thread edges on the left and right side of the screw.

smallest_rectanglel_x1d (ContoursAffineTrans, Rowll, Columnll, Row21, \
Column21)
clip_contours_x1d (ContoursAffineTrans, ClippedContours, Rowll + 90, 0, \
Row21 - 90, Width)

Step 3: Get regression lines

fit_line_contour_xld (ClippedContours, 'regression', -1, 0, 5, 2, RowBegin, \
ColBegin, RowEnd, ColEnd, Nr, Nc, Distl)

The operator fit_line_contour_x1d now uses the contours to compute the start (RowBegin, ColBegin) and
end (RowEnd, ColEnd) points for the regression lines (see figure 4.6). To get the points of the regression lines, the
parameter Algorithm must be set to *regression’.

Until now, we handled both contours together in tuples. The tuple Edges contains the contours of the two thread
edges, and the tuples for the start and end points of the regression lines contain the points for both regression
lines. With the operator gen_contour_polygon_x1ld we explicitly create the contours of the individual re-
gression lines. For this, we use the corresponding start and end points as input, i.e., for the first regression
line (RegressContour0) we use the start and end points with the index 0, and for the second regression line
(RegressContourl) we use the elements with index 1.

gen_contour_polygon_xld (RegressContourO, [RowBegin[0],RowEnd[0]1], \
[ColBegin[0],ColEnd [0]])

gen_contour_polygon_x1ld (RegressContourl, [RowBegin[1],RowEnd[1]], \
[ColBegin[1],ColEnd[1]])

B-40

Examples for Practical Guidance

Contours (transformed and clipped)

Figure 4.6: Clipped contours and the corresponding regression lines.

Step 4: Extract contour points of the thread edges

select_obj (ClippedContours, EdgeContour0O, 1)
get_contour_x1ld (EdgeContourO, RowEdgeO, ColEdgeO)
select_obj (ClippedContours, EdgeContourl, 2)
get_contour_x1ld (EdgeContourl, RowEdgel, ColEdgel)

To get the deviation between the thread contours and their corresponding regression lines, we additionally need
the contour points of the thread contours. The thread contours are stored both in the tuple Edges. Since we want
to access the individual contours more than once, the usage of the indices may become a little bit confusing. To
make the code clearer and also to apply further tuple operations to each contour later on, we select the elements of
the tuple individually and assign concise names to them: EdgeContour0 and EdgeContourl. In HDevelop, the
selection of iconic objects is not realized via the operator assign but by the operator select_obj. Note that the
index of iconic objects starts with 1 instead of 0. For the thread contours EdgeContour0 and EdgeContourl, a
tuple containing the rows and columns of the contour points is obtained with get_contour_x1d.

Step 5: Calculate the horizontal distances

distance_pc (RegressContourO, RowEdgeO, ColEdgeO, DistanceMinO, \

DistanceMax0)
minDistanceO := min(DistanceMinO)
maxDistance0 := max(DistanceMinO)
meanDistance0 := mean(DistanceMinO)

The obtained contour points are used to calculate the distances between each contour point of the thread edge and
the contour of the corresponding regression line. The operator distance_pc returns the minimum and maximum
distances. The minimum distances between the contour points and the contour of the regression line correspond
to the horizontal distances in approximately each row (as long as the screw is vertical). These in turn can be used
to query the minimum, maximum, and mean horizontal distance between both contours (see figure 4.3, left). The
code only shows the proceeding for EdgeContour0 and RegressContour0.

Step 6: Visualize the result in a zoom window

dev_display (EdgeContour0)

dev_display (RegressContour0)

get_contour_x1d (RegressContour0, RowContourO, ColContour0)

for i := 800 to 950 by 1
projection_pl (RowEdgeO[il, ColEdgeO[i], RowContour0[0], ColContourO[0], \

RowContourO[1], ColContour0O[1], RowProjO, ColProjo)
gen_contour_polygon_x1ld (Contour, [RowEdgeO[i],RowProj0], [ColEdgeO[i], \
ColProjo]l)

dev_display (Contour)

endfor

4.4 Get the Distance between Straight Parallel Contours

B-41

To visualize the individual horizontal distances between a thread contour and its regression line in a zoom window
(see figure 4.3, right), the endpoints of the regression line are made explicit by get_contour_points and with
these, the points of the thread contour are projected onto the regression line using projection_pl. The lines be-
tween the points and their projections are created by gen_contour_polygon_x1d and visualized by the standard
visualization operator dev_display.

4.4 Get the Distance between Straight Parallel Contours

Different approaches are available to measure the distance between straight parallel contours. Here, we introduce
approaches that use

 contours obtained by line fitting together with a geometric operation,
* parallel polygon segments together with a geometric operation, or

* the smallest enclosing rectangle.

4.4.0.1 Using contours obtained by line fitting

A third measuring approach realized in the HDevelop program %HALCONEXAMPLES’\solution_guide\
2d_measuring\measure_screw.hdev measures the distance between the two parallel contours of the regression
lines RegressContour0 and RegressContouri, which were obtained in section 4.3.

Contours (transformed and clipped) Mean distance
between regression

lines:

237.2 pixels

Figure 4.7: Distance between two regression lines.

For this, we compute the distances between the end points of the regression lines using the operator distance_pp
(see section 2.4 on page 25). Before displaying the mean width of the object, we check if the distance between the
two points at the top of the screw correspond to the distance between the points at the bottom, i.e., we check if the
lines are parallel within a certain tolerance. The result of the distance measurement is displayed in figure 4.7.

distance_pp (RowBegin[1], ColBegin[1], RowEnd[0], ColEnd[0], Distancel)
distance_pp (RowBegin[0], ColBegin[0], RowEnd[1], ColEnd[1], Distance2)
if (abs(Distancel - Distance2) < 1)
disp_message (WindowID, 'Mean distance', 'image', 10, 720, 'black', \
'false')
disp_message (WindowID, 'between regression', 'image', 60, 720, 'black', \
'false')
disp_message (WindowID, 'lines:', 'image', 110, 720, 'black', 'false')
disp_message (WindowID, ((Distancel + Distance2) / 2)$'.4' + ' pixels', \
'image', 210, 720, 'black', 'false')
endif

B-42

Examples for Practical Guidance

4.4.0.2 Using polygons instead of lines

The HDevelop program #HALCONEXAMPLESY\solution_guide\2d_measuring\
measure_metal_part_extended.hdev demonstrates a similar approach. As before, a contour is extracted
and segmented into linear and circular contour segments (the segments are stored in the tuple ContoursSplit).
In contrast to the approach described before, instead of fitting lines, the linear segments are approximated by
Polygons using gen_polygons_x1d. From these polygons the approximately parallel lines Parallels can be
explicitly extracted by gen_parallels_x1d.

Distance BC: 63.15 pixels

Distance AD: 61.17 pixels

Orientation AB: 65 degrees

Orientation DC: 65.7 degrees

Figure 4.8: Distance between the endpoints of parallel polygon segments.

To get the end points and orientation of the corresponding line segments, we apply the operator
get_parallels_x1d for each pair of parallel lines. In HDevelop, the number of pairs, needed for creating the
for-loop, is obtained by the operator count_obj, which counts the number of objects of a tuple containing iconic
data. For control data, the operator assign would be used (see HDevelop User’s Guide, section 8.5.3 on page
256). For a pair of parallel lines we now calculate the distances between the opposed end points with the geometric
operation distance_pp. The result for the distance measurement as well as the obtained orientations of the lines
are displayed in figure 4.8.

gen_polygons_x1d (ContoursSplit, Polygons, 'ramer', 2)
gen_parallels_x1ld (Polygons, Parallels, 80, 75, 0.15, 'true')
count_obj (Parallels, NumberParallels)
for i := 1 to NumberParallels by 1
select_obj (Parallels, SelectedParallel, i)
get_parallels_x1ld (SelectedParallel, RowlParallels, CollParallels, \
LengthlParallels, PhilParallels, Row2Parallels, \
Col2Parallels, Length2Parallels, Phi2Parallels)
distance_pp (RowlParallels[0], ColilParallels[0], Row2Parallels[1], \
Col2Parallels[1], Distance2)
distance_pp (RowlParallels[1], ColilParallels[1], Row2Parallels([0], \
Col2Parallels[0], Distancel)
endfor

4.4.0.3 Using the smallest enclosing rectangle

If you have a complex shape that is delimited by straight lines that are known to be parallel and you want
to know the distance between them, you can also obtain the width of the object by computing the smallest
enclosing rectangle for it. To do so, you do not even have to extract the individual segments, but simply
extract the region or contour of the object and then apply smallest_rectangle2 to the region or small-
est_rectangle2_x1d to the contour. Depending on the dimension of your object, the returned parameter

4.5 Get Width of Linear Structures B-43

Lengthl or Length?2 then represents half of the distance between the parallel lines. Figure 4.9 shows the smallest
enclosing rectangle obtained in the HDevelop program %HALCONEXAMPLESY,\solution_guide\2d_measuring\
measure_metal_part_extended.hdev. Furthermore, for contours that approximate a rectangle, the fitting of
rectangles to contours using fit_rectangle2_contour_xId is suitable (see section 4.9 on page 49).

Lenght ! Width of smallest enclosing rectangle:

199.3 { 64.61 pixels

Figure 4.9: Length and width of the smallest enclosing rectangle of a region.

4.5 Get Width of Linear Structures

To get the width of thin linear structures, the operator 1ines_gauss can be used. Be aware that the linear structures
are called lines, but in contrast to the XLD lines obtained by a line fitting (see section 2.2.4 on page 19), they are
built by edge pairs, and for each line attributes like the width can be stored and queried.

D= 7.55071
D=5.42468

~D5.89766

D= 7.36847
- §.46053p=5,07558

Figure 4.10: Linear structures obtained by lines_gauss in the HDevelop example angio.hdev: (left) the extracted
lines, (right) visualization of the diameters of the selected lines.

Examples showing how to apply the operator are

* %HALCONEXAMPLESY,\hdevelop\Applications\Measuring-2D\angio.hdev (see figure 4.10) and

* JHALCONEXAMPLESY,\hdevelop\Filters\Lines\lines_gauss.hdev.

The latter is briefly introduced in the Solution Guide I, section 7.3.2 on page 67. For detailed descriptions of the
parameter selection, follow the links to the corresponding sections in the Reference Manual.

B-44 Examples for Practical Guidance

Briefly, you can select whether bright or dark lines are detected and adjust parameters for the general line extrac-
tion. Additionally, you can set parameters that control which attributes are stored with the obtained lines. These
attributes can then be queried with the operator get_contour_attrib_x1d. Depending on the selected parame-
ters in lines_gauss you can query the following parameters: the angle of the direction perpendicular to the line
(’angle’), the magnitude of the second derivative (’response’), the line widths to the left or to the right of the
line (’width_left’, ’width_right’), the asymmetry of a line point (’asymmetry’), or the contrast of a line
point (’contrast’).

4.6 Get Lines and Junctions of a Grid

The HDevelop program %HALCONEXAMPLESY,\solution_guide\2d_measuring\measure_grid.hdev inspects
a numeric keypad. In particular, the positions of the junctions of the grid separating the keys are measured.

Figure 4.11: Lines and junction points representing the grid that separates the keys.

The general steps of the program comprise

* the extraction of the region between and around the keys,

* the determination of the region’s skeleton and the extraction of the corresponding linear contours,

* the separation of the horizontal and vertical lines,

* the intersection of the horizontal lines with the vertical lines to get the junction points of a regular grid, and
* the reduction of the point set to those points that represent a real existing junction.

» Additionally, the usability of region processing for the extraction of junction points is discussed.

Step 1: Get region between and around the keys

mean_image (Image, ImageMean, 7, 7)

dyn_threshold (Image, ImageMean, RegionDynThresh, 4, 'dark')

connection (RegionDynThresh, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ['max_diameter', \
'contlength']l, 'and', [200, 800], [99999, 99999])

closing_circle (SelectedRegions, RegionClosing, 1.5)

First, the region representing the space between and around the keys is segmented and further processed via region
processing. This includes the coarse segmentation of the image via a dynamic threshold (dyn_threshold), the
selection of a connected region of a certain size (connection followed by select_shape), as well as the closing
of small gaps by closing_circle. This is illustrated in figure 4.12, a-d.

4.6 Get Lines and Junctions of a Grid

B-45

Step 2: Get skeleton and the corresponding horizontal and vertical linear contours

skeleton (RegionClosing, Skeleton)

gen_contours_skeleton_x1d (Skeleton, ContoursSkeleton, 1, 'filter')

segment_contours_x1ld (ContoursSkeleton, ContoursSplitSkeleton, 'lines', 5, \
2, 1)

select_contours_x1ld (ContoursSplitSkeleton, SelectedContours, \
'contour_length', 30, 1000, -0.5, 0.5)

union_collinear_contours_xld (SelectedContours, UnionCollinearContours, 100, \

10, 20, rad(10), 'attr_keep')

Then, the region is reduced to its skeleton, which is then transformed to a contour by
gen_contours_skeleton_x1d. The contour is segmented into individual lines (segment_contours_x1d),
from which those are selected by select_contours_x1d that have a minimum contour length (see figure 4.12,
e-f). Additionally, collinear lines are merged by union_collinear_contours_x1d (see figure 4.13, left).

.d) e) f)

Figure 4.12: Extraction of region: (a) original image, (b) image processed by mean_image, (C) extracted region with
gaps, (d) region after closing gaps by a morphological operator, (e) skeleton, (f) selected contour
segments.

Now, lines are fitted to each contour by fit_line_contour_x1d and the corresponding line contours are gen-
erated by gen_contour_polygon_x1d. For each contour the orientation is checked within a tolerance of 0.05
rad in both directions and horizontal lines are stored in the tuple LinesHorizontal and vertical lines in the tuple
LinesVertical. Both are first created by gen_empty_obj and then successively filled using concat_obj.

B-46

Examples for Practical Guidance

count_obj (UnionCollinearContours, NumberContours)
gen_empty_obj (LinesHorizontal)
gen_empty_obj (LinesVertical)
for i := 1 to NumberContours by 1
select_obj (UnionCollinearContours, ObjectSelected, i)
fit_line_contour_x1ld (ObjectSelected, 'tukey', -1, 0, 5, 2, RowBegin, \
ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)
gen_contour_polygon_x1ld (Contour, [RowBegin,RowEnd], [ColBegin,ColEnd])
Phi := atan2(-Nr,Nc)
if (abs(Phi) < rad(5))
concat_obj (LinesVertical, Contour, LinesVertical)
endif
if (rad(85) < abs(Phi) and abs(Phi) < rad(95))
concat_obj (LinesHorizontal, Contour, LinesHorizontal)
endif
endfor

Step 3: Get junction points

Now, inside a loop, each horizontal line is intersected (intersection_lines) with each vertical line to get the
junction points of the regular grid. This grid is built by lines of infinite length, so that the intersection leads to
junction points also at the large keys (see figure 4.13, right).

RowJunction := []
ColJunction := []
RowRealJunction := []
ColRealJunction := []

count_obj (LinesHorizontal, NumberLH)
count_obj (LinesVertical, NumberLV)
for i := 1 to NumberLH by 1
select_obj (LinesHorizontal, HorizontalLine, i)
get_contour_x1d (HorizontalLine, RowHorizontal, ColHorizontal)
for j := 1 to NumberLV by 1
select_obj (LinesVertical, Verticalline, j)
get_contour_x1d (VerticalLine, RowVertical, ColVertical)
intersection_lines (RowHorizontal[0], ColHorizontal[0], \
RowHorizontal[1], ColHorizontall[1], \
RowVertical[0], ColVerticall[O], RowVerticall[1], \
ColVertical[1], Row, Column, IsOverlapping)
distance_ps (Row, Column, RowHorizontal[0], ColHorizontal[0], \
RowHorizontal[1], ColHorizontal[1], DistanceH, \
DistanceHMax)
distance_ps (Row, Column, RowVertical[0], ColVertical[O], \
RowVertical[1], ColVertical[1], DistanceV, \

DistanceVMax)
RowJunction := [RowJunction,Row]
ColJunction := [ColJunction,Column]

Step 4: Reduce the point set

if ((DistanceH <= 30) and (DistanceV <= 30))
RowRealJunction := [RowRealJunction,Row]
[ColRealJunction,Column]

ColRealJunction :
endif
endfor
endfor

To get only those points of the grid that represent a real existing junction, for each junction point the distances
to the two line segments used for its creation are computed by distance_ps. If both distances are less than 30
pixels, the point is assumed to be a real junction point (see figure 4.14, left).

Step 5: Junction points via region processing

Alternatively, junction points can also be obtained via region processing. Here, we apply junctions_skeleton
to the skeleton we obtained in a preceding step. Since the operator returns regions instead of points, we apply

4.7 Get Positions of Corner Points

B-47

Figure 4.13: Get junction points: (left) collinear horizontal and vertical contours obtained by line fitting, (right) all
junctions of the regular grid including junctions that do not represent a real existing junction between
keys.

get_region_points to get the center positions of each junction. Note that in contrast to contour processing
these junction positions are not based on a grid obtained by straight lines but on the region extracted between the
keys. Depending on the region, the resulting junction points may be ambiguous and may not represent junctions
of a regular grid (see figure 4.14, right).

junctions_skeleton (Skeleton, EndPoints, JuncPoints)
get_region_points (JuncPoints, RowJunctionRegionProcessing, \
ColumnJunctionRegionProcessing)
gen_cross_contour_xld (CrossCenter, RowJunctionRegionProcessing, \
ColumnJunctionRegionProcessing, 12, 0.785398)

Result of corresponding

region processing

Figure 4.14: Get junction points: (left) lines fitted into linear contours and the junction points of the grid separating
the keys, (right), skeleton and irregular junction points obtained by region processing.

4.7 Get Positions of Corner Points

Corner points are extracted in different ways. The HDevelop program %HALCONEXAMPLESY,\solution_guide\
2d_measuring\measure_metal_part_extended.hdev extracts the positions of the corners of a metal plate in
an image by two different approaches. The first approach applies a point operator and the other one determines the
corner points by intersecting lines.

The general steps of the program comprise

B-48

Examples for Practical Guidance

Foerstner Points vs. intersection | I:

Distance between Foerstner points and
points obtained by intersection_|I:

in P1: 1.12 pixels

in P2: 0.212 pixels

Figure 4.15: Foérstner points (crosses parallel to coordinate axes) versus intersection points (inclined crosses).

* the determination of corner points via the point operator of Forstner,
¢ the determination of corner points by the intersection of lines, and

e the comparison of both approaches.

Step 1: Get Forstner points

points_foerstner (Image, 1, 2, 3, 200, 0.3, 'gauss', 'false', RowJunctions, \
ColJunctions, CoRRJunctions, CoRCJunctions, \
CoCCJunctions, RowArea, ColArea, CoRRArea, CoRCArea, \
CoCCArea)

The first approach is realized by a point operator. Here, the points (row and column coordinates stored in the tuples
RowJunctions and ColJunctions) are extracted by points_foerstner.

Step 2: Get corner points by line intersection

edges_sub_pix (ImageReduced, Edges, 'lanser2', 0.5, 40, 90)
segment_contours_x1ld (Edges, ContoursSplit, 'lines_circles', 6, 4, 4)
sort_contours_x1d (ContoursSplit, SortedContours, 'upper_left', 'true', \
'column')
count_obj (SortedContours, NumSegments)
for i := 1 to NumSegments by 1
select_obj (SortedContours, SingleSegment, i)
get_contour_global_attrib_x1d (SingleSegment, 'cont_approx', Attrib)
fit_line_contour_x1d (SingleSegment, 'tukey', -1, 0, 5, 2, RowBegin, \
ColBegin, RowEnd, ColEnd, Nr, Nc, Dist)
RowsBegin := [RowsBegin,RowBegin]
ColsBegin := [ColsBegin,ColBegin]
RowsEnd := [RowsEnd,RowEnd]
ColsEnd := [ColsEnd,ColEnd]
endfor

The second approach intersects lines to get the positions of the corners. The adjacent lines building the corners
are obtained by line fitting, i.e., edges are extracted using edges_sub_pix, the obtained contours are segmented
by segment_contours_x1d and sorted by sort_contours_x1d, and to each linear segment a line is fitted via
fit_line_contour_x1ld. The returned end points of the lines are stored in the tuples RowsBegin, ColsBegin,
RowsEnd, and ColsEnd.

4.8 Get Angle between Adjacent Lines B-49

From these end points the intersection points of the lines (RowIntersect*, ColumnIntersectx) are calculated
via intersection_lines.

intersection_lines (RowsBegin[0], ColsBegin[0], RowsEnd[0], ColsEnd[0], \
RowsBegin[1], ColsBegin[1], RowsEnd[1], ColsEnd[1], \
RowIntersectl, ColumnIntersectl, IsOverlappingl)

intersection_lines (RowsBegin[0], ColsBegin[0], RowsEnd[0], ColsEnd[0], \
RowsBegin[2], ColsBegin[2], RowsEnd[2], ColsEnd[2], \
RowIntersect2, ColumnIntersect2, IsOverlapping?2)

Step 3: Compare the two approaches

distance_pp (RowJunctions[1], ColJunctions[1], RowIntersectl, \
ColumnIntersectl, Distancel)

distance_pp (RowJunctions[0], ColJunctions[0], RowIntersect2, \
ColumnIntersect2, Distance2)

To compare the results of both approaches, the distances between the points obtained by the line intersection and
their corresponding Forstner points are computed by distance_pp and displayed in figure 4.15.

4.8 Get Angle between Adjacent Lines

With the end points of the adjacent lines obtained in section 4.7 we now can use the geometric operation angle_11
to get the angle between the adjacent lines and thus check whether both angles are exactly or only approximately
right angled (see figure 4.16).

Anglc in P1: 90.4 degrecs Angle in P2: 90 degrecs

Figure 4.16: Angle between lines: (left) angle in P1, (right) angle in P2.

angle_11 (RowsBegin[0], ColsBegin[0], RowsEnd[0], ColsEnd[0], RowsBegin[1], \
ColsBegin[1], RowsEnd[1], ColsEnd[1], Anglel)

angle_11 (RowsBegin[0], ColsBegin[0], RowsEnd[0], ColsEnd[0], RowsBegin[2], \
ColsBegin[2], RowsEnd[2], ColsEnd[2], Angle2)

4.9 Get Positions, Orientations, and Extents of Rectangles

The HDevelop program ;HALCONEXAMPLESY,\solution_guide\2d_measuring\measure_chip.hdev extracts
the rectangular shapes of the die and the frame of a chip. The relations between the two positions and orientations
are needed, e.g., for a correct die bonding.

The general steps of the program comprise

B-50

Examples for Practical Guidance

Distance between centers: 4.7 pixel

Difference between orientations: 0.33 deg

Figure 4.17: From left to right: selected contours, merged contours of the individual rectangles, results obtained by
rectangle fitting.

e the creation of an ROI for the die,

* the extraction of the contours of the die,

« the fitting of a rectangle to the contours of the die,

e the creation of an ROI and the extraction of the contours of the frame,
« the fitting of a rectangle to the contours of the frame, and

* the comparison of the position and orientation of both rectangles.
Step 1: Create ROI for the die

fast_threshold (Image, Regiomn, 120, 255, 20)

opening_rectanglel (Region, RegionOpening, 4, 4)

connection (RegionOpening, ConnectedRegions)

£ill_up (ConnectedRegions, RegionFillUp)

select_shape (RegionFillUp, SelectedRegions, ['rectangularity', 'area'l, \
'and', [0.8, 7001, [1, 99999])

smallest_rectangle2 (SelectedRegions, Row, Column, Phi, Lengthl, Length2)

gen_rectangle2 (Rectangle, Row, Column, Phi, Lengthl, Length2)

The program starts with region processing. It coarsely determines the region of the die using fast_threshold.
The operator opening_rectanglel suppresses the small wires. After separating the individual connected parts
of the region with connection, we fill up the remaining holes (fi11_up) and select a region of rectangular shape
and a certain size (select_shape). The region is approximated by its smallest enclosing rectangle (small-
est_rectangle2 and gen_rectangle?2), which leads to a pixel-precise approximation for the position, orienta-
tion, and extent of the rectangle.

Because we need subpixel precision here, region processing is not sufficient. Thus, the region of the rectangle is
reduced to its slightly enlarged boundary (boundary followed by dilation_rectanglel) and the reduced image
(obtained by reduce_domain) is used as ROI, i.e., it builds the search space for the following contour processing
(see figure 4.18, left).

boundary (Rectangle, RegionBorder, 'inner_filled')
dilation_rectanglel (RegionBorder, RegionDilation, 4, 4)
reduce_domain (Image, RegionDilation, ImageReduced)

Step 2: Extract contours of the die

edges_sub_pix (ImageReduced, Edges, 'canny', 1.5, 30, 40)
segment_contours_x1ld (Edges, ContoursSplit, 'lines', 5, 2, 2)
select_contours_x1d (ContoursSplit, SelectedContoursl, 'contour_length', 10, \
99999, -0.5, 0.5)
union_adjacent_contours_xld (SelectedContoursl, UnionContoursl, 30, 1, \
'attr_keep')

4.9 Get Positions, Orientations, and Extents of Rectangles

B-51

Inside the ROI, the subpixel-precise edges of the die’s border are extracted by the operator edges_sub_pix. The
edges are segmented into linear contours using the operator segment_contours_x1d with the parameter Mode
set to *lines’. The contours having a minimum length are selected by select_contours_x1d. The contours
that belong to the border are now adjacent within a certain tolerance. To merge the contours that are neighboring
within a range of 30 pixels, the operator union_adjacent_contours_x1d is applied.

Step 3: Fit rectangle to the contours of the die

fit_rectangle2_contour_xld (UnionContoursl, 'tukey', -1, 0, 0, 3, 2, Rowl, \
Columnl, Phil, Lengthll, Lengthl2, PointOrderl)

gen_rectangle2_contour_x1ld (Rectanglel, Rowl, Columnl, Phil, Lengthll, \
Length12)

The operator fit_rectangle2_contour_xld now uses the obtained contour to get the position, orienta-
tion, and extent of the best-fitting rectangle of the die. The corresponding rectangle is then created by
gen_rectangle2_contour_x1d.

Step 4: Create ROI and extract contours of the frame

threshold_sub_pix (ImageReducedl, Borderl, 70)

A similar procedure is applied for the border of the frame. The extraction of the ROI (see figure 4.18, right) is
slightly different because the appearance of both objects in the image differs. Furthermore, the operator thresh-
old_sub_pix instead of edges_sub_pix extracts the contours. The ROI in this case is needed to reduce the
number of contours to investigate rather than to reduce the runtime of the contour extraction.

]
.

Figure 4.18: ROls for the rectangle fitting: (left) ROI for the die, (right) ROI for the frame.

Step 5: Fit rectangle to the contours of the frame

Again, the adjacent contours are merged, the parameters of the best-fitting rectangle are obtained for the merged
contour, and the corresponding rectangle is created and displayed.

Step 6: Compare the position and orientation of both rectangles

distance_pp (Rowl, Columnl, Row2, Column2, Distance)
DifferenceOrientation := Phil - Phi2

With the parameters of the rectangles for both shapes, the distance between their center positions (distance_pp)
and the difference between their orientations (Phil and Phi2 were obtained automatically by the rectangle fitting)
are calculated. Figure 4.17 shows the obtained contours and results.

An example that fits rectangles to contours and additionally gets the distances of the contour’s points from the fit-
ted rectangle using the operator dist_rectangle2_contour_points_x1d is HALCONEXAMPLESY,\hdevelop\
XLD\Features\fit_rectangle2_contour_x1d.hdev.

B-52

Examples for Practical Guidance

4.10 Get Radii of Circles and Circular Arcs

The HDevelop program %HALCONEXAMPLESY,\solution_guide\2d_measuring\measure_circles.hdev ex-
tracts the radii of circular shapes that are punched out of a metal plate. The image of the plate is acquired using
a back light to get a good contrast between fore- and background. Region processing, in particular the extraction
of the smallest enclosing circle for a region, would be possible for some of the shapes (after suppressing gaps or
protrusions with a morphological operator), but for others it is unsuitable since circles have to be fitted only to
parts of their contour (see section 3.2 on page 31, ¢). Thus, region processing is used only to create an ROI for the
following contour processing.

Figure 4.19: Circle fitting: black contours overlaid by the white fitted circles and display of their radii.

The general steps of the program comprise

e the creation of an ROI,
* the extraction of circular contour segments, and

* the fitting of circles to the circular contour segments.

Step 1: Create ROI

fast_threshold (Image, Region, 200, 255, 20)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 70, 50000)
boundary (SelectedRegions, RegionBorder, 'inner_filled')

dilation_circle (RegionBorder, RegionDilation, 3.5)

unionl (RegionDilation, RegionUnion)

reduce_domain (Image, RegionUnion, ImageReduced)

To extract the bright regions of the circular shapes a fast_threshold is applied. Connected regions are separated
by connection and regions with a minimum size are selected for the further processing using select_shape
(see figure 4.20, left). The regions are restricted to their borders by the operator boundary. These borders are
enlarged a bit by a dilation (dilation_circle). The dilated regions are merged (union1) so that the image can
be reduced to a region that contains all parts needed for the further tasks (reduce_domain). The reduced image is
used as an ROV, i.e., it builds the search space for the subpixel-precise edge extraction.

4.10 Get Radii of Circles and Circular Arcs

B-53

Step 2: Extract circular contour segments

edges_sub_pix (ImageReduced, Edges, 'canny', 1.5, 10, 40)
segment_contours_x1ld (Edges, ContoursSplit, 'lines_circles', 5, 2, 2)
select_contours_x1d (ContoursSplit, SelectedContours, 'contour_length', 25, \
99999, -0.5, 0.5)
count_obj (SelectedContours, NumberContours)
gen_empty_obj (Circles)
for i := 1 to NumberContours by 1
select_obj (SelectedContours, ObjectSelected, i)
get_contour_global_attrib_x1d (ObjectSelected, 'cont_approx', Attrib)
if (Attrib == 1)
concat_obj (Circles, ObjectSelected, Circles)
endif
endfor
union_cocircular_contours_xld (Circles, UnionContours, rad(60), rad(10), \
rad(30), 100, 50, 10, 'true', 1)

The edges obtained by edges_sub_pix are segmented into linear and circular segments by seg-
ment_contours_x1ld. Because more contours exist than needed for the circle extraction, only the contours having
a minimum contour length are selected by select_contours_x1d. For these, it is checked if they are circular,
i.e., the value for ’cont_approx’ is queried by get_contour_global_attrib_x1d and if it is 1 the contour
is stored in the tuple Circles. Now, all circular contours that lie approximately on the same circle (i.e., they are
cocircular) are merged by union_cocircular_contours_x1d (see figure 4.20, right). These contours are now
used for the circle fitting.

Figure 4.20: Circle fitting: (left) original image overlaid by the extracted regions, (right) circular contours selected for
the circle fitting.

Step 3: Fit circles to the circular contour segments

count_obj (UnionContours, NumberCircles)
for i := 1 to NumberCircles by 1
select_obj (UnionContours, ObjectSelected, i)
fit_circle_contour_x1ld (ObjectSelected, 'algebraic', -1, 0, 0, 3, 2, \
Row, Column, Radius, StartPhi, EndPhi, \
PointOrder)
gen_circle_contour_x1ld (ContCircle, Row, Column, Radius, 0, rad(360), \
'positive', 1.5)
dev_display (ContCircle)
endfor

For the circle fitting, the operator fit_circle_contour_x1d is applied to each contour. It returns, amongst
others, the center and radius of the circle that fits best to the contour. The corresponding circle is generated with
the operator gen_circle_contour_x1d, which then can be displayed or processed further. Figure 4.19 shows
the extracted contours overlaid by their best-fitting circles as well as information about their radii.

B-54

Examples for Practical Guidance

4.11 Get Deviation of a Contour from a Circle

The HDevelop program %HALCONEXAMPLESY\solution_guide\2d_measuring\measure_pump.hdev shows a
second example for the extraction of circles in an image. Here, not only the radius of a best-fitting circle must be
found for a contour, but also the deviation of the contour from the circle.

Circle radius and average distance between circle and contour: Rl: 19.

D awyg:

R2: 18§.4

D avy: 0

R3: 19

D awg:

R4: 18.

D avy:

R3: 18.

D awg:

Ré: 11.

D avy:

R7?: 1&.

D awy:

R&: 19.

D avy:

Figure 4.21: Circles are fitted into the circular contours and for each circle the radius and the deviation of the contour
from the circle are displayed.

The general steps of the program comprise

¢ the creation of an ROI,
* the extraction of circular contour segments,
* the fitting of circles into the circular contour segments, and

* the calculation of the average distance between a circular contour segment and the corresponding fitted
circle.

Step 1: Create ROI

fast_threshold (Image, Region, 0, 70, 150)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ['outer_radius', \
'anisometry', 'area'l, 'and', [5, 1, 100], [50, 1.8, 99999])

shape_trans (SelectedRegions, RegionTrans, 'outer_circle')

dilation_circle (RegionTrans, RegionDilation, 5.5)

unionl (RegionDilation, RegionUnion)

reduce_domain (Image, RegionUnion, ImageReduced)

The approach, like others before, starts with the creation of a suitable ROI. To do so, fast_threshold is applied,
the connected regions are separated by connection, shapes with a certain outer radius, anisometry, and area are
selected using select_shape, and the regions are transformed into their outer circles by shape_trans. These
circles are enlarged by dilation_circle, the regions are merged into a single region by union1, and the image
is reduced to the obtained region (reduce_domain). The reduced image builds the search space for the contour
processing.

4.11 Get Deviation of a Contour from a Circle

B-55

Step 2: Extract circular contour segments

threshold_sub_pix (ImageReduced, Border, 80)
select_shape_x1d (Border, SelectedXLD, ['contlength', 'outer_radius'l, \
'and', [70, 15], [99999, 99999])
segment_contours_x1ld (SelectedXLD, ContoursSplit, 'lines_circles', 4, 2, 2)
select_shape_x1d (ContoursSplit, SelectedXLD3, ['outer_radius', \
'contlength'], 'and', [15, 301, [45, 99999])
union_cocircular_contours_xld (SelectedXLD3, UnionContours2, 0.5, 0.1, 0.2, \
2, 10, 10, 'true', 1)
sort_contours_x1d (UnionContours2, SortedContours, 'upper_left', 'true', \
'column')

Contours are created using the operator threshold_sub_pix. To select the relevant contours from the obtained set
of contours, the operator select_shape_x1d is applied, searching for contours of a specific length and with a cer-
tain outer radius. The relevant contours are then segmented into lines and circles with segment_contours_x1d.
From the segments, again contours with a specific contour length and outer radius are selected. Cocircular con-
tours are merged by union_cocircular_contours_x1d (see figure 4.22) and finally the contours are sorted by
sort_contours_x1d.

Figure 4.22: ROI for circle fitting: (left) original image of a pump, (right) ROl and extracted circular contours.

Step 3: Fit circles to the circular contour segments

count_obj (SortedContours, NumSegments)
for i := 1 to NumSegments by 1
select_obj (SortedContours, SingleSegment, i)
NumCircles := NumCircles + 1
fit_circle_contour_x1d (SingleSegment, 'atukey', -1, 2, 0, 5, 2, Row, \
Column, Radius, StartPhi, EndPhi, PointOrder)
gen_circle_contour_xld (ContCircle, Row, Column, Radius, 0, rad(360), \
'positive', 1)

Since the final contours are all circular, the best fitting circle is calculated for each contour by
fit_circle_contour_x1d. If also linear contours were contained in the set of contours, you would have to
extract the circular segments first, like in the example in section 4.10 on page 52. The best fitting circles are now
generated by gen_circle_contour_x1d.

Step 4: Calculate the deviation of the circular contour segments from the fitted circles

dist_ellipse_contour_xld (SingleSegment, 'algebraic', -1, 0, Row, \
Column, 0, Radius, Radius, MinDist, MaxDist, \
AvgDist, SigmaDist)
endfor

B-56

Examples for Practical Guidance

To get the deviation of the contour from the generated ellipses (or circles in this case), the operator
dist_ellipse_contour_x1d is applied. Be aware that only the deviation between the fitted circle and the con-
tour segment used for the fitting is calculated. The quality of the fitting in relation to the real circle also depends
on the coverage of the circle by the contour segment. For the circle with the index 6 in figure 4.21, e.g., less than
half of the circle was covered by the contour segment (see figure 4.22, right). Thus, despite the good result for the
deviation between contour segment and fitted circle, the result is less satisfying in an optical inspection than for
the other circles that have a larger deviation but a bigger coverage.

4.12 Inspect Ball Grid Array (BGA)

Another application with circular objects is the inspection of a ball grid array (BGA). A BGA consists of very
small objects, which have an approximately symmetrical gray value distribution, and for which the transition area
between fore- and background can be rather large compared to the region of the object. Because the standard
region or contour-based approaches work with hard transitions (see figure 4.23), for symmetric objects with a large
transition area it is recommended to extract object features with an approach that considers the gray value features
instead. Available operators comprise area_center_gray, which is used to check the gray value volume and
center position of each ball, and elliptic_axis_gray, which returns the length of the axes and the orientation
of the ellipse having the same orientation and aspect ratio as the input region.

hard transition after
region segmentation

255
0 -
255
smooth transition when
weighting with gray values
0 . 255
0 >

Figure 4.23: Weighting with gray values leads to smooth transitions, opposite to the hard transition of a standard
region segmentation.

The HDevelop program %HALCONEXAMPLESY\solution_guide\2d_measuring\inspect_bga.hdev shows
how the balls of a BGA can be checked for deformations and their correct positions in the grid. The latter is
realized by comparing them with the balls of a reference BGA.

The general steps of the program comprise

* the extraction of the balls of the reference BGA and the determination of their positions,
* the sorting of the balls of the reference BGA,
* the extraction of the balls in a second BGA and their sorting according to the reference BGA, and

« the inspection of the second BGA, as well as a comparison between the positions of both BGAs.

Step 1: Extract balls in the reference BGA and determine their positions

fast_threshold (Image, Region, 95, 255, 3)

connection (Region, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ['area', 'anisometry'l, \
'and', [20, 1.0], [100, 1.7])

dilation_rectanglel (SelectedRegions, RegionDilation, 3, 3)

area_center_gray (RegionDilation, Image, Volume, Row, Column)

4.12 Inspect Ball Grid Array (BGA)

B-57

White c¢ross: bkall failed to be segmented Ellipse: center positions deviate

Figure 4.24: Irregularities of a BGA: (left) missing ball marked by a cross, (right) balls with center positions that
deviate from the reference positions marked by ellipses.

The program starts with the extraction of the balls from the reference image via a region processing. Often, an
additional gray value scaling is recommended, which adapts the gray value distribution according to two thresholds
that depend on the fore- and background of the balls. Here, it is not necessary as the gray value distribution
for all balls is rather constant. The obtained regions are slightly enlarged and inside each region the operator
area_center_gray computes the gray value volume, i.e., the sum of the gray values of all pixels of the region,
and the position of the region’s center of gravity.

Step 2: Sort the balls of the reference BGA

The obtained center positions of the balls (Row, Column) are returned in an arbitrary order, i.e., the index of a
variable does not contain information about the position of the corresponding ball in the grid. To compare the
center positions of corresponding balls in different BGAs, a comparable sequence of the balls is needed, i.e., we
have to spatially sort the balls. In a first step, we determine their positions in the grid separately for the rows
and columns. To do so, we normalize the BGA as follows: We apply gen_region_points to create a region
described by the center points of the balls and use its enclosing rectangle (obtained by smallest_rectangle2,
see figure 4.25, left) to define a transformation matrix.

gen_region_points (RegionBGACenters, Row, Column)
smallest_rectangle2 (RegionBGACenters, RowBGARect, ColumnBGARect, \
PhiBGARect, LengthlBGARect, Length2BGARect)
BallsPerRow := 14
BallsPerCol := 14
BallDistCol := 2 * LengthiBGARect / (BallsPerCol - 1)
BallDistRow := 2 * Length2BGARect / (BallsPerRow - 1)
hom_mat2d_identity (HomMat2DIdentity)
hom_mat2d_rotate (HomMat2DIdentity, -PhiBGARect, RowBGARect, ColumnBGARect, \
HomMat2DRotate)
hom_mat2d_translate (HomMat2DRotate, -RowBGARect + Length2BGARect, \
-ColumnBGARect + Length1BGARect, HomMat2DTranslate)
hom_mat2d_scale (HomMat2DTranslate, 1 / BallDistRow, 1 / BallDistCol, O, 0, \
HomMat2DScale)
affine_trans_point_2d (HomMat2DScale, Row, Column, RowNormalized, \
ColNormalized)
BGARowIndex := round(RowNormalized)
BGAColIndex := round(ColNormalized)

With it, we transform the balls so that the grid becomes horizontal, the center position of the ball in the upper left
corner is placed in the origin of the coordinate system, and the distance between the individual balls becomes 1.
The rounded values for the transformed ball positions then describe the indices of the ball’s positions separately
for the rows and columns of a regular grid. Figure 4.25, right, shows the normalized grid, which is scaled again
for visualization purposes.

Instead of separate lists for the rows and columns, we want to obtain a single sorted list of indices, which is ordered
consecutively from left to right and from top to bottom. Therefore, we create a tuple that has the capacity for all

B-58

Examples for Practical Guidance

+ ++ +
B A
+
+4t ettt
B A A
+4++4+ +4++4
+4++4+ +4++4
+4+++ +4+++
e 4+t

Figure 4.25: Normalization of the grid for the reference BGA: (left) smallest rectangle enclosing the region that is
built by the center points of the balls, (right) transformed and normalized grid (scaled for visualization
purposes).

grid points of the BGA (BallMatrix), i.e., its size is defined by the maximum numbers of balls per row and
column. Because the actual balls of the BGA are not placed all over this grid, we first assign the start value -1
to all instances. Now, with the help of the indices that we have obtained separately for the rows and columns of
the extracted balls (BGARowIndex, BGAColIndex), we sort the balls by assigning new values to the corresponding
instances of BallMatrix. After the sorting, the value of BallMatrix with the index of a point coordinate in the
sorted grid returns either the index of the corresponding point coordinate in the unsorted grid (see figure 4.26), or
the value -1 if the grid position is not occupied by a ball.

NumBalls := |Rowl|
BallMatrix := gen_tuple_const(BallsPerRow * BallsPerCol,-1)
for i := 0 to NumBalls - 1 by 1
BallMatrix[BGARowIndex[i] * BallsPerCol + BGAColIndex[i]] := i
endfor

Sorting of the indices of the point positions

R T S

01 4 01 2 Link from point index of sorted
rid to corresponding point
327 —~ 3/4/5] ponding b
index of unsorted grid:
5/8|6 678 e.g., MatrixBalls[2]=4
unsorted grid sorted grid

Figure 4.26: Sorting of the point indices.

Step 3: Extract balls in a second BGA and sort them according to the reference

elliptic_axis_gray (RegionDilation, Image, RaCheck, RbCheck, PhiCheck)
AnisometryCheck := RaCheck / RbCheck

Now, a second image is processed, which contains the BGA we want to check for irregularities. Again, the regions
of the balls are extracted and slightly enlarged via a region processing. The operators area_center_gray and
elliptic_axis_gray are applied to get the features of the regions under consideration of their gray values. The
latter operator returns the radii and orientation of the ellipse having the same moments as the region. The center
points obtained by area_center_gray are transformed (see figure 4.27) and sorted like the center points of the
reference image. Except for the additional application of elliptic_axis_gray and an anisometry check, which
are both needed to investigate the balls in a later step, the processing is the same as for the reference BGA.

4.12 Inspect Ball Grid Array (BGA)

B-59

B o Sh S O S S RS
o O O S S
B o o o S
B ot o S
B R A I

+

+

+

+

+

Figure 4.27: Transformed and normalized grid of the BGA to be checked (scaled for visualization purposes).

Step 4: Inspect the second BGA and compare it to the reference BGA

j =0
for i := 0 to BallsPerRow * BallsPerCol - 1 by 1
if (BallMatrix[i] >= O and BallMatrixCheck[i] >= 0)
Rows1[j] := Row[BallMatrix[i]]
Cols1[j] Column[BallMatrix[i]]
Rows2[j] RowCheck [BallMatrixCheck[i]]
Cols2[j] := ColumnCheck[BallMatrixCheck[i]]
Phi2[j] := PhiCheck[BallMatrixCheck[i]]
Ra2[j] RaCheck[BallMatrixCheck[i]]
Rb2[j] RbCheck [BallMatrixCheck[i]]
Anisometry2[j] := AnisometryCheck[BallMatrixCheck[i]]
Volume2[j] := VolumeCheck[BallMatrixCheck[i]]
ji=j+1
endif
endfor

Then, the BGA of the second image is evaluated further. Until now, we have only links from the point indices
in the sorted grid to the point indices in the unsorted grid. Now, we create tuples that contain the actual data of
the existing balls in the specified order. In particular, tuples for the row and column coordinates of the balls in
the reference BGA (Rows1, Cols1) and in the BGA to be checked (Rows2, Cols?2), as well as for the ellipse radii
(Ra2, Rb2), anisometry values (Anisometry?2), and the gray value volumes (Volume2) of the second BGA are
created. These tuples are reduced sets of data as they contain only the data for the grid positions that are occupied
by balls in both BGAs, i.e., the size of the tuples is related to the actual number of extracted balls in the second
image and not to the number of possible grid positions.

To compare the center positions of the balls of the second BGA with the center positions of the balls of the
reference BGA, we superimpose both (reduced) sets of positions, i.e., we transform the balls of the reference
BGA so that they have the same position, orientation, and scale as the corresponding balls of the BGA to be
checked. For the superimposition, the operator vector_to_rigid determines the affine 2D transformation by
the point correspondences between both sets of coordinates. With the obtained transformation matrix the reduced
set of positions for the reference BGA (Rows1, Colsl) is transformed into RowTrans and ColumnTrans. To
check also for missing balls in the second BGA, we further transform the set of unsorted reference positions
originally obtained by area_center_gray (Row, Column), i.e., the set that still contains all positions of the regular
grid, including the positions that regularly do not contain balls (marked by the value -1 in BallMatrix) and the
positions of the balls that are only detected in the reference BGA.

vector_to_rigid (Rowsl, Colsl, Rows2, Cols2, HomMat2D)
affine_trans_point_2d (HomMat2D, Rowsl, Colsl, RowTrans, ColumnTrans)
affine_trans_point_2d (HomMat2D, Row, Column, RowTransFull, ColumnTransFull)

Then, the distance between the sorted points of the BGA to be checked (Rows2, Cols2) and the sorted and trans-
formed points of the reference BGA (RowTrans, ColumnTrans) is calculated by distance_pp.

B-60

Examples for Practical Guidance

distance_pp (Rows2, Cols2, RowTrans, ColumnTrans, Distance)

Now, the complete grid is investigated again. For each position of the regular grid, the existence of a corresponding
ball in both BGAs is checked. If the grid position contains a ball in both sets (both indices are larger than -1),
the sorted and reduced sets of data can be used for the comparison. First, the distance between the corresponding
center positions is queried. If it is larger than 0.05 pixels, the ellipse for the ball is stored in the tuple Deviation.
If it is smaller than 0.05 pixels, further features are checked, in particular the anisometry, i.e., the deformation of
the circle (ellipse for deformed ball stored in Deformation), and the range of the gray value volume (ellipse for
outlier stored in Volume).

3 =R0
for i := 0 to BallsPerRow * BallsPerCol - 1 by 1
if (BallMatrix[i] >= O and BallMatrixCheck[i] >= 0)
gen_ellipse (Ellipse, Rows2[j], Cols2[j], Phi2[j], Ra2[j], Rb2[j])
if (Distance[j] > 0.05)
concat_obj (EllipseDeviation, Ellipse, EllipseDeviation)
else
if (Anisometry2[jl > 1.2)
concat_obj (EllipseDeformation, Ellipse, EllipseDeformation)
else
if (Volume2[j] < 5500 or Volume2[j] > 10000)
concat_obj (EllipseVolume, Ellipse, EllipseVolume)

else
concat_obj (EllipseCorrect, Ellipse, EllipseCorrect)
endif
endif
endif
ji=3j+1

If a ball exists in the reference BGA but not in the BGA to be checked, a cross at the ball’s position is created
(gen_cross_contour_x1d) and stored in the tuple Missing. The different results can then be visualized. In
figure 4.24, e.g., the missing balls (left) and the balls with deviating center positions (right) are displayed by a
cross or ellipse, respectively.

else
if (BallMatrix[i] >= 0)
gen_cross_contour_x1ld (Cross, RowTransFull[BallMatrix[il]], \
ColumnTransFull [BallMatrix[i]], 10, \
0.785398)
concat_obj (Missing, Cross, Missing)
endif
endif
endfor

The operators considering the gray value features are more precise than the corresponding operators for regions
or contours. Nevertheless, since their calculation is rather complex, they are only recommended for very small
symmetric objects.

4.13 Extract Contours from Color Images

Some features may only be detected when working with color images instead of gray value images, since they
have the same gray value but a different color.

When extracting edges or lines from color images, three operators are available. With edges_color_sub_pix
you can extract subpixel-precise edges directly from your color image. A pixel-precise approach is provided by
edges_color. For thin linear structures like those described in section 4.5 on page 43, but in a color image,
lines_color is the suitable operator. It works similar to the approach described for gray value images but with a
more limited number of attributes that can be stored with the lines. HDevelop examples for the contour extraction
using color are:

4.13 Extract Contours from Color Images

B-61

Figure 4.28: A soccer field: (left) the different parts cannot be distinguished in the gray value image, (right) the
edges separating the different parts are successfully extracted in the color image.

e JHALCONEXAMPLESY,\hdevelop\Filters\Edges\edges_color_sub_pix.hdev for the subpixel-
precise edge extraction using color,

* JHALCONEXAMPLESY,\hdevelop\Filters\Edges\edges_color.hdev for the pixel-precise edge extrac-
tion using color (see also description in the Solution Guide I, section 6.1.4.2 on page 59), and

 HALCONEXAMPLESY,\hdevelop\Filters\Lines\lines_color.hdev for the extraction of thin linear
structures using color (see also the description in the Solution Guide I, section 14.3.4 on page 138),

Figure 4.28 shows some results of the second example in the list. A soccer field contains red and green parts in
the color image. In the gray value image (left) the red and green parts cannot be distinguished. In the color image
(right), the separating edges are successfully extracted using edges_color.

After the extraction of the edges, measurements can be applied as described in the previous sections.

B-62 Examples for Practical Guidance

Miscellaneous

B-63

Chapter 5

Miscellaneous

The previous sections mainly handled the actual measuring approaches that are common for measuring tasks in
machine vision. Several tasks need further processing that is applied in addition to the actual measuring tools:

* If you need to compare parts of similar objects with each other, section 5.1 proposes an approach for the
unambiguous identification of the corresponding object parts.

e In many applications, the dimensions of the measured objects must be determined in world coordinates,
e.g., in um. Section 5.2 shortly shows how to measure in world coordinates. There, the applied camera
calibration additionally compensates perspective distortions in the image. More detailed information about
measuring in world coordinates can be found in the Solution Guide III-C.

* The application of a simple affine 2D transformation, which is needed for various reasons to translate, rotate,
or scale an image, a region, or a contour, is shortly described in section 4.1 on page 35.

* When working with a line scan camera, we recommend to read the Solution Guide II-A, section 6.6 on page
39.

5.1 Identify Corresponding Object Parts

In many applications, similar objects must be measured and the results must be compared to the results obtained
for a reference image or reference data stored in a Computer Aided Design (CAD) model. In the latter case,
you can import ARC/INFO or DXEF files via read_contour_x1ld_arc_info or read_contour_xld_dxf, re-
spectively. If you wish to create an image containing the CAD model you can create an artificial image by
gen_image_const and paint the contour of the CAD model into it using paint_x1d. To identify errors of an
object, e.g. a specific drill hole that is missing, the corresponding parts of the measured object and the reference ob-
ject must be clearly identified. The HDevelop program %HALCONEXAMPLESY\solution_guide\2d_measuring\
measure_metal_part_id.hdev measures the drill holes of metal parts. The first image is used as reference
image. The program detects missing drill holes as well as drill holes that deviate more than 2 pixels in their center
position or radius from the corresponding drill holes of the part in the reference image.

The general steps of the program comprise

¢ the alignment (here, the rotation into a defined orientation) of the object,

 the measurements in the image coordinate system,

* the creation of an object coordinate system,

* the transformation of the measurement results into the object coordinate system,
* the storage of the reference data, and

* the comparison of the results for other images to the reference data.

B-64

Miscellaneous

Deviation (>2 pixels) for center
ol radius of circle with index 2
Missing: circle with index 3

oe) .° (O

Figure 5.1: Compare parts of two similar objects: (left) reference object with indices of the parts, (right) object to
inspect, deviations marked.

Step 1: Extract and rotate contours to get a horizontal object

threshold (Image, Region, 90, 255)
dilation_rectanglel (Region, RegionDilation, 10, 10)
reduce_domain (Image, RegionDilation, ImageReduced)

For each image, an ROI for the following contour processing is created. To do so, the region of the object is
obtained with threshold, the region is enlarged with dilation_rectanglel, and the image is reduced to this
region by reduce_domain. Inside the ROI, threshold_sub_pix is applied to extract the contours of the metal
part’s boundary.

threshold_sub_pix (ImageReduced, Edges, 75)

The metal parts can be arbitrarily positioned and oriented in the image. Thus, we rotate their contours, so that
every metal part is horizontal when being inspected. To realize the rotation, for each image the orientation and
center position of the object’s region are obtained by orientation_region and area_center. These are used
to create a transformation matrix (vector_angle_to_rigid) and the transformation matrix is used for the affine
2D transformation that rotates the contours (affine_trans_contour_x1d).

orientation_region (Region, OrientationRegion)

area_center (Region, Area, RowCenter, ColumnCenter)

vector_angle_to_rigid (RowCenter, ColumnCenter, OrientationRegion, \
RowCenter, ColumnCenter, 0, HomMat2DRotate)

affine_trans_contour_x1ld (Edges, ContoursAffineTrans, HomMat2DRotate)

Step 2: Measure

segment_contours_x1ld (ContoursAffineTrans, ContoursSplit, \
'lines_circles', 6, 4, 4)
sort_contours_x1d (ContoursSplit, SortedContours, 'upper_left', 'true', \
'column')

The rotated contours of each metal part are segmented into lines and circles, which are sorted according to their
spatial position. The sorting of the segments is important to have the circles of the images to measure and the
circles of the reference image in the same sequence. The sorted contours are now used to find the best-fitting lines
and circles for the segments (see also, e.g., section 4.10 on page 52).

5.1 Identify Corresponding Object Parts

B-65

for I := 1 to NumberSegments by 1
select_obj (SortedContours, ObjectSelected, I)
get_contour_global_attrib_x1d (ObjectSelected, 'cont_approx', \
Attrib)
if (Attrib == 1)
fit_circle_contour_x1ld (ObjectSelected, 'algebraic', -1, 0, 0, \
3, 2, Row, Column, Radius, StartPhi, \
EndPhi, PointOrder)
gen_circle_contour_x1ld (ContCircle, Row, Column, Radius, \
StartPhi, EndPhi, PointOrder, 1.5)
RowsE := [RowsE,Row]
ColsE := [ColsE,Column]
RadiiE := [RadiiE,Radius]
dev_display (ContCircle)
else
fit_line_contour_xld (ObjectSelected, 'tukey', -1, 0, 5, 2, \
RowBegin, ColBegin, RowEnd, ColEnd, Nr, \

Nc, Dist)
gen_contour_polygon_xld (Line, [RowBegin,RowEnd], [ColBegin, \
ColEnd])
concat_obj (Lines, Line, Lines)
endif
endfor

The circle data is the actual feature we want to obtain for each image and which we want to compare to the results
of the reference image.

Step 3: Create object coordinate system

select_contours_xld (Lines, LinesVertical, 'direction', rad(88), \
rad(92), 0, 0)

count_obj (LinesVertical, NumberLV)

select_contours_x1d (Lines, LinesHorizontal, 'direction', rad(-2), \
rad(2), 0, 0)

count_obj (LinesHorizontal, NumberLH)

The lines are now used to create an object coordinate system with the lower left corner of the horizontal metal part
as origin. The axes are built by the vertical line on the left border and the horizontal line at the lower border of the
metal part. To determine the coordinates of the origin in the image coordinate system, both lines are intersected
similar to the approach used in section 4.6 on page 44. To do so, first all horizontal and vertical lines are separated
by selecting the lines with a specific direction.

Whereas the example in section 4.6 on page 44 intersected all vertical lines with all horizontal lines, here only the
two lines needed as coordinate axes for the object coordinate system are intersected. Thus, we first determine the
row and column coordinates of the endpoints belonging to the vertical line with the lowest column coordinate.

B-66

Miscellaneous

ColVmin := 0
RowHmax := 0
for I := 1 to NumberLV by 1
select_obj (LinesVertical, SelectedV, I)
get_contour_x1d (SelectedV, RowV, ColV)
if (I == 1)
ColVmin := ColV[0]
RowAl := RowV[0]

ColAl := ColV[0]

RowA2 := RowV[1]

ColA2 := ColV[1]
else

if (ColV[0] < ColVmin)
ColVmin := ColV[0]

RowAl := RowV[O0]
ColAl := ColV[0]
RowA2 := RowV[1]
ColA2 := ColV[1]
endif
endif
endfor

Then, we determine the row and column coordinates of the horizontal line with the highest row coordinate (in the
image coordinate system).

for J := 1 to NumberLH by 1
select_obj (LinesHorizontal, SelectedH, J)
get_contour_x1d (SelectedH, RowH, ColH)
if (RowH[0] > RowHmax)
RowHmax := RowH[O]
RowB1 := RowH[O]

ColB1 := ColH[0]

RowB2 := RowH[1]

ColB2 := ColH[1]
endif

endfor

The intersection is done via the operator intersection_lines and results in the point coordinates RowO and
Col0, i.e., the origin of the object coordinate system.

intersection_lines (RowAl, ColAl, RowA2, ColA2, RowB1, ColB1, RowB2, \
ColB2, Row0O, Col0, IsOverlapping)

Step 4: Transform results into the object coordinate system

hom_mat2d_identity (HomMat2DIdentityResults)
hom_mat2d_slant (HomMat2DIdentityResults, rad(180), 'x', 0, 0, \
HomMat2DSlantResults)
hom_mat2d_translate (HomMat2DSlantResults, Row0O, -Col0O, \
HomMat2DTranslateResults)
affine_trans_pixel (HomMat2DTranslateResults, RowsE, ColsE, RowsELocal, \
ColsELocal)

To transform the already obtained center points of the fitted circles from the image coordinate system into the
object coordinate system, we create a transformation matrix. Because the coordinates of the image coordinate
system are seen from left to right and from top to bottom, and we want the local coordinate system seen from
left to right but from bottom to top, we horizontally mirror the coordinate system by adding a slant of 180° to
the transformation matrix using the operator hom_mat2d_slant. Because the local coordinate system is parallel
to the image coordinate system, no rotation is necessary, but we add a translation by hom_mat2d_translate so
that RowO and Co10 describe the new origin. The final affine 2D transformation is now applied to the positions of
the circle centers, so that the actual results of the measurement are available in the local coordinate system. The
transformation of the results is done via affine_trans_pixel.

5.1 Identify Corresponding Object Parts

B-67

Step 5: Store the results for the first image as reference

RowsELocalRef := RowsELocal
ColsELocalRef := ColsELocal
RadiiERef := RadiiE
NumberRowsERef := |RowsELocall

For the first image, we store the results so that we have them still available as reference when measuring the metal
parts of the other images. The circles of the reference image are shown in figure 5.2.

Figure 5.2: Circles fitted to the rotated contours of the reference image.
Step 6: Compare the results for other images to the reference image

ID_Deviation := []
ID_Missing := []
NumberRowsE := |RowsEl|
if (NumberRowsE == NumberRowsERef)
distance_pp (RowsELocalRef, ColsELocalRef, RowsELocal, \
ColsELocal, DistanceEllipseCenters)
DiffRadius := abs(RadiiE - RadiiERef)
for I := 0 to |DistanceEllipseCenters| - 1 by 1
if (DistanceEllipseCenters[I] > 2 or DiffRadius[I] > 2)
ID_Deviation := [ID_Deviation,I + 1]
endif
endfor
endif

For the comparison of the reference image with the image to measure, we first check whether the number of ob-
tained circles is equal. If so, we check for small deviations of the positions or radii between the corresponding
circles. To check the deviation, the distance between the center points of the circles are determined by dis-
tance_pp and the difference between the circle radii is computed. If at least one of them is bigger than 2 pixels,
the deviating circles are marked in the image.

If the number of circles in both images are not equal, the sorted circles are compared with each other as shown in the
following code. In particular, each result of the image to measure is compared to the result of the reference image
having the same index (this is the reason for sorting the segments at the beginning of the contour processing). If the
position and the radius allow us to conclude that the circle is the same in both images, i.e., the deviation for both is
less than 10 pixels, it is checked for deviations that are larger than 2 pixels. If the deviations of position and radius
are larger than 10 pixels, we assume that the circle is not the same. Then, we compare the same circle of the image
to measure with the circle of the reference image having the next higher index. This procedure continues until
either the corresponding circle is found or all remaining circles of the reference image were checked. Figure 5.3
shows the result for one of the images to measure.

B-68 Miscellaneous

if (NumberRowsE < NumberRowsERef)
J =0
for I := 0 to NumberRowsE - 1 by 1
0K :=0
while (OK == 0)
distance_pp (RowsELocalRef[J], ColsELocalRef[J], \
RowsELocal[I], ColsELocall[I], Distance)
DiffRadius := abs(RadiiE[I] - RadiiERef[J])
if ((Distance < 10) and (DiffRadius < 10))
if (Distance > 2 or DiffRadius > 2)

ID_Deviation := [ID_Deviation,J + 1]

endif
0K :=1

else
ID_Missing := [ID_Missing,J + 1]

endif

if (J == NumberRowsERef - 1)
0K :=1

endif

J:=J+1

endwhile
endfor
endif

Deviation (>2 pixels) for circle with index 2
Missing: circle with index 3

Figure 5.3: Comparison of the circle data to the circle data of a reference image: in image 2, the circle with index 2
deviates more than 2 pixels in its size or position, the circle with index 3 is missing.

5.2 Measure in World Coordinates

In many applications, the dimensions of the measured objects must be determined in world coordinates, e.g., in
um. A second reason for measuring in world coordinates is to compensate radial and perspective distortions. For
measuring in world coordinates, a camera calibration must be applied. It results in the exterior camera parameters,
i.e., data describing the relation of the camera to the plane in which the 2D measurements are realized. With the
obtained data, two kinds of transformations can be applied:

* You can either measure the features of interest in the distorted image and afterwards transform them into the
world plane, or

* you use the data to first transform the image and then apply your measurements in the transformed image.

5.2 Measure in World Coordinates

B-69

Which approach to choose depends on the basic tools you use for the measuring. If you obtain your mea-
surement results by contour processing, it is recommended to first measure and then transform the resulting
points or contours into world coordinates. To do so, after the camera calibration you apply the operators
image_points_to_world_plane or contour_to_world_plane_x1d, respectively. For detailed information
about how to transform image into world coordinates or vice versa we recommend to read the Solution Guide
III-C, section 3.3 on page 76.

If you measure via region processing, the transformation of results can become rather complex, so it is recom-
mended to first transform, i.e., rectify, the image and then measure in the transformed image. For detailed infor-
mation about rectifying images, we recommend to read the Solution Guide III-C, section 3.4 on page 80.

In the following, we briefly show how to apply a camera calibration, rectify an image that has perspective distor-
tions because of an oblique view, and apply measurements in the rectified image. In particular, the HDevelop ex-
ample %HALCONEXAMPLESY\solution_guide\2d_measuring\measure_perspective_scratch.hdev mea-
sures the lengths of scratches on a planar anodized aluminum surface.

~_ L=0.4219 cm

Figure 5.4: Image to measure: (left) original image with perspective distortions, (right) transformed image and the
results of the measurement (L=length).

The general steps of the program comprise

¢ the calibration of the camera,
¢ the transformation of the image, and

¢ the measurements in the transformed image.

Step 1: Calibrate the camera

The example starts with the camera calibration (see Solution Guide III-C, section 3.2 on page 61 for details).
For this, multiple images are needed, each containing a calibration plate that is placed in a different position and
orientation. In one of the calibration images, in this case in the first one, the calibration plate must be placed in
the measuring plane, i.e., it must be parallel (with a known distance) to the anodized aluminum plate we want to
investigate.

To calibrate the camera, information about the used calibration plate and initial values for the internal camera
parameters must be known. The information on the used standard calibration plate, i.e., the positions of the
marks inside the calibration plate coordinate system, is stored in the file caltab_30mm.descr’. This and other
information is added to a so-called calibration data model.

CaltabName := 'caltab_30mm.descr'

gen_cam_par_area_scan_division (0.012, 0, 0.0000055, 0.0000055, Width / 2, \
Height / 2, Width, Height, StartCamPar)

create_calib_data ('calibration_object', 1, 1, CalibDatalD)

set_calib_data_cam_param (CalibDataID, O, [], StartCamPar)

set_calib_data_calib_object (CalibDataID, O, CaltabName)

)
E]
o
@
c

<
]
o

o

=

B-70

Miscellaneous

In the program, the images containing calibration plates are read. For each image in the loop, find_calib_object
searches for the calibration plate in the image and determines the marks, calculates their 2D positions in the image,
and estimates the pose of the calibration plate. The contours and point coordinates of the marks are accessed from
the calibration data model with get_calib_data_observ_contours and get_calib_data_observ_points,
respectively.

for I := 1 to NumImages by 1
read_image (Image, 'scratch/scratch_calib_' + I$'02d")
find_calib_object (Image, CalibDataID, 0, O, I, [1, [1)
get_calib_data_observ_contours (Caltab, CalibDataID, 'caltab', 0, 0, I)
get_calib_data_observ_points (CalibDataID, O, O, I, RCoord, CCoord, \
Index, StartPose)
endfor

With the obtained data of the calibration plates, the operator calibrate_cameras determines the internal and
external camera parameters, which are then queried using get_calib_data.

calibrate_cameras (CalibDataID, Error)
get_calib_data (CalibDatalD, 'camera', O, 'params', CamParam)
get_calib_data (CalibDatalID, 'calib_obj_pose', [0, 1], 'pose', PoseCalib)

Step 2: Transform the image

tuple_replace (PoseCalib, 5, PoseCalib[5] - 90, PoseCalibRot)
set_origin_pose (PoseCalibRot, -0.04, -0.03, 0.00075, Pose)

The pose of the measuring plane, i.e., the external camera parameters obtained for the image in which the calibra-
tion plate lies in the measuring plane, is now stored in the variable PoseCalib. Since the calibration plate was
rotated by 90° (the black triangular mark normally has to be placed in the upper left corner), we add a rotation
to the corresponding parameter of the pose using tuple_replace. Note that poses can be defined by different
sequences of translations and rotations (see Solution Guide III-C, section 2.1.4 on page 20). If you are not sure
about the sequence used for the pose you want to change, you can also convert the pose to a homogeneous trans-
formation matrix with pose_to_hom_mat3d, explicitly add a local rotation to the axis you want to change using
hom_mat_3d_rotate_local, and convert the resulting homogeneous transformation matrix back to a pose using
hom_mat3d_to_pose.

Additionally, we apply the operator set_origin_pose to the pose to add a translation to the z-coordinate to
compensate for the distance between the calibration pattern and the measuring plane, which is described by the
known thickness of the calibration plate. The translations in x- and y- direction are applied mainly so that the
rectified image optimally fits the displaying window.

From the corrected pose, the operator pose_to_hom_mat3d creates a homogeneous transformation matrix. This
is used by gen_image_to_world_plane_map to generate a projection map that describes the mapping between
the image plane and the plane z=0 of a world coordinate system. This map can be used now to transform the
images with the operator map_image so that the measuring plane is rectified with a scaling described by PixelD-
ist. Here, we transform two images, one containing the calibration plate that is placed in the measuring plane
(see figure 5.5), and the other containing the scratches we want to investigate (see figure 5.4). The first one is
transformed mainly for visualization purposes, whereas the latter is the actual image we wanted to obtain. This
image (ModelImageMapped) is used now for the actual measurement.

PixelDist := 0.00013
pose_to_hom_mat3d (Pose, HomMat3D)
gen_image_to_world_plane_map (Map, CamParam, Pose, Width, Height, Width, \
Height, PixelDist, 'bilinear')
Imagefiles := ['scratch/scratch_calib_01', 'scratch/scratch_perspective']
for T :=1to 2 by 1
read_image (Image, Imagefiles[I - 1])
map_image (Image, Map, ModelImageMapped)
endfor

5.2 Measure in World Coordinates B-71

Figure 5.5: Image with the calibration plate in the measuring plane: (left) perspectively distorted image, (right) image
after transformation.

Step 3: Measure in the transformed image

fast_threshold (ModelImageMapped, Region, O, 80, 20)

fill_up (Region, RegionFillUp)

erosion_rectanglel (RegionFillUp, RegionErosion, 5, 5)

reduce_domain (ModelImageMapped, RegionErosion, ImageReduced)

fast_threshold (ImageReduced, Regionl, 55, 100, 20)

dilation_circle (Regionl, RegionDilationl, 2.0)

erosion_circle (RegionDilationl, RegionErosionl, 1.0)

connection (RegionErosionl, ConnectedRegions)

select_shape (ConnectedRegions, SelectedRegions, ['area',
151, [2000, 10001)

'ra'], 'and', [40, \

The measurement starts with the extraction of the aluminum plate and the following code searches for scratches
having a minimum size and extent. For this, a classical region processing is applied as described in section 2.1
on page 11. In particular, the region of the aluminum plate is extracted using fast_threshold, £ill_up fills
the remaining holes in the region, and an erosion (erosion_rectanglel) suppresses the edges of the border
for the later extraction of the scratches. Inside this region, the scratches are extracted by fast_threshold and
processed by some morphological operators (dilation_circle and erosion_circle). The obtained region is
separated into connected components by connection and components with a specific size and extent are selected
as scratches.

(%)
3
o
7}
c
&
[}
o
i
=

In a loop, the individual scratches are reduced to their medial axis by skeleton. The skeletons are converted into
contours by gen_contours_skeleton_x1d and for each contour, the length (1ength_x1d) and center position
(area_center_points_x1d) are obtained like introduced in section 2.2.5 on page 20. The results are visualized
in figure 5.4.

count_obj (SelectedRegions, NumScratches)
for I := 1 to NumScratches by 1
select_obj (SelectedRegions, ObjectSelected, I)
skeleton (ObjectSelected, Skeleton)
gen_contours_skeleton_x1d (Skeleton, Contours, 1, 'filter')
length_x1d (Contours, ContLength)
area_center_points_xld (Contours, Area, Row, Column)
endfor

B-72 Miscellaneous

Index

B-73

Index

2D measuring
first example, 35
overview, 7
2D measuring in color image, 60
2D measuring tools, 11
overview, 27
2D measuring with blob analysis, 11
2D measuring with contour processing, 14
2D measuring with geometric operations, 25
2D measuring with template, 63
2D metrology, 21

align image or region for 2D measuring, 35
blob analysis vs. contour processing, 31

combine XLD contours, 17
compute mean of values, 37
compute parallel XLD contours, 42
count objects, 31

create XLD contours, 15

edge extraction (pixel-precise), 15

edge extraction (subpixel-precise), 15

extract features for blob analysis, 14

extract features of XLD contours, 20

extract subpixel edges without smoothing, 38

fit XLD contours to polygons, 42
fit XLD contours to regression line, 39

measure 2D area, 29

measure 2D area with gray-value moments, 56
measure 2D dimensions, 30

measure 2D distance, 30

measure 2D distance between point and contour, 40
measure 2D distance of parallel XLD contours, 41
measure 2D orientation, 29

measure 2D orientation of rectangle, 49

measure 2D orientation with gray-value moments, 56
measure 2D position, 30

measure 2D position of corner points, 47

measure 2D position of grid junctions, 44
measure 2D position of rectangle, 49

measure 2D position with gray-value moments, 56
measure 2D radius of circle, 52

measure 2D size of rectangle, 49

measure 2D width (pixel-precise), 36

measure 2D width of lines, 43

measure angle between 2D lines, 49

measure angle between 2D objects, 29

measure deviation from straight 2D line, 37

measure deviation of XLD contour from 2D circle,
54
measuring and comparison 2D, 7

perform fitting of XLD contours, 19
preprocess image, 12

process regions, 12

process XLD contours, 16

rectify image for 2D measuring, 68

segment image(s) for blob analysis, 12
segment XLD contours, 18

simplify XLD contours, 18

subpixel thresholding, 16

suppress XLD contours, 17

transform results of 2D measuring into 3D (world)
coordinates, 68

use region of interest for edge extraction (subpixel-
precise), 38

XLD contour coordinates, 40

B-74 Index

	1 Introduction
	2 Basic Tools
	2.1 Region Processing
	2.1.1 Preprocess Image or Region
	2.1.2 Segment the Image into Regions
	2.1.3 Select and Modify Regions
	2.1.4 Extract Features

	2.2 Contour Processing
	2.2.1 Create Contours
	2.2.2 Get Relevant Contours
	2.2.3 Segment Contours
	2.2.4 Extract Features of Contour Segments by Approximating them by known Shapes
	2.2.5 Extract Features of Contours Without Knowing Their Shapes

	2.3 2D Metrology
	2.3.1 Aligning the Metrology Model based on different methods
	2.3.2 Querying Results

	2.4 Geometric Operations

	3 Tool Selection
	3.1 From the Feature to the Tool
	3.1.1 Area
	3.1.2 Orientation and Angle
	3.1.3 Position
	3.1.4 Dimension and Distance
	3.1.5 Number of Objects

	3.2 Region Processing vs. Contour Processing

	4 Examples for Practical Guidance
	4.1 Rotate Image and Region (2D Transformation)
	4.2 Get Width of Screw Thread
	4.3 Get Deviation of a Contour from a Straight Line
	4.4 Get the Distance between Straight Parallel Contours
	4.5 Get Width of Linear Structures
	4.6 Get Lines and Junctions of a Grid
	4.7 Get Positions of Corner Points
	4.8 Get Angle between Adjacent Lines
	4.9 Get Positions, Orientations, and Extents of Rectangles
	4.10 Get Radii of Circles and Circular Arcs
	4.11 Get Deviation of a Contour from a Circle
	4.12 Inspect Ball Grid Array (BGA)
	4.13 Extract Contours from Color Images

	5 Miscellaneous
	5.1 Identify Corresponding Object Parts
	5.2 Measure in World Coordinates

	Index

