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About This Manual

In a broad range of applications matching is suitable to find and locate objects in images. This Solution Guide
leads you through the variety of approaches that are provided by HALCON.

An introduction to the available matching approaches, including tips for the selection of a specific approach for a
specific application, is given in section 1 on page 7.

Some general topics that are valid for multiple approaches are discussed in section 2 on page 17. These comprise,
e.g., the selection of a proper template, tips for a speed-up, and the use of the results.

Section 3 on page 47 then provides you with detailed information about the individual matching approaches.

The HDevelop example programs that are presented in this Solution Guide can be found in the specified subdirec-
tories of the directory HALCONEXAMPLESY,.

Symbols
The following symbols are used within the manual:

(&~ This symbol indicates a tip.

This symbol indicates an information you should pay attention to.
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Chapter 1

Introduction

This section introduces you to HALCON’s matching functionality. In particular, it provides you with an overview
of

¢ how to use this manual (section 1.1),

¢ the general meaning of matching (section 1.2),

* how to generally apply a matching (section 1.3),
* the available approaches (section 1.4), and

* information about which approaches are suitable in which situation (section 1.5 on page 9).

1.1 How to Use This Manual?

If you have no or only little experience with matching applications using HALCON, the following subsections
introduce you to matching with HALCON in general and guide you through the most salient differences between
the available matching approaches. Thus, they help you to select the matching approach that is best suited for your
specific application. Further, we recommend to read section 2 on page 17 before you step into the subsection of
section 3 on page 47 that in detail describes your selected matching approach.

If you are an experienced HALCON user that is familiar with matching and you are looking for further tips on
how to optimize your specific application, it may be sufficient to immediately step into the subsection of section 3
on page 47 that describes the matching approach of your choice and possibly have an additional look on selected
subsections of section 2 on page 17, which describe some general topics that are needed for multiple matching
approaches.

1.2 What is Matching?

With matching, HALCON provides a method for the robust location of objects in images, which can be used
for many different applications. To suit the different requirements of the applications, different approaches are
available. All approaches consist of a small set of operators for which only a few parameters have to be adjusted.
Further, none of the approaches requires an explicit segmentation of the objects in the images. Thus, you can
successfully locate your objects even if you have no special knowledge in machine vision.

The main idea of matching is to use a prototype object (template), create a model of it and search the model in other
images. For most matching tasks you obtain the model from a reference image that shows the object of interest.
To suppress other structures or objects that are contained in this image, the image is reduced to a region of interest
(ROI) that only contains the object and which may have an arbitrary shape. The reduced image is the template
image from which the model is created by an approach-specific operator. Another approach-specific operator uses
the obtained model to find the object in different search images. That is, it searches for image structures that match
the model (within small tolerances).
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The different matching approaches provided by HALCON differ amongst others in the image structures that are
used to build the model. Some matching approaches use, e.g., the relations of gray values to their surrounding
(neighborhood) to build a model. Others use, e.g., the shapes of contours (see figure 1.1). The result of the matching
is in each case information about the position, for most approaches the orientation, and for some approaches also
the scale of the found object in the search image.

a) b) c)

Figure 1.1: Matching using shapes of contours: a) the image of an attention sign is used to build a b) (shape) model
in different resolutions (pyramid levels), which is used to c) locate an instance of the model in an image.

1.3 How to Generally Apply a Matching?

Although different matching approaches use different sets of operators, the main proceeding is similar for all and
consists of the following main steps:

1. Create a model for the object of interest. A model of an object, i.e., the internal data structure describing
a searched object, is created using either a representative reference image of it or a synthetic model. Which
way to follow depends on the selected approach and the available data. Certain matching approaches require
a subsequent model training.

2. Find the model in search images. Instances of the previously created model are searched in images and

their position, in most cases their orientation, and for some approaches also their scale are returned.

Additional to these essential steps, most approaches provide means to modify a model, reuse it (i.e., store it to file
and read it from file), and to query information from it.

1.4 Which Approaches are Available?
The matching approaches described in this Solution Guide comprise

* an approach that describes a model by the gray-value relations of the contained pixels:

— the correlation-based matching (section 3.1 on page 47), which uses normalized cross correlation
(NCC) to match objects or patterns, respectively.

* approaches that describe a model by the shapes of its contours:

— the shape-based matching (section 3.2 on page 53),

— the component-based matching (section 3.3 on page 76), which is designed for the specific case that
several components (rigid parts) of an object move relative to each other,

— the local deformable matching (section 3.4 on page 91), which can handle and return local deforma-
tions of the object and allows to rectify the image part containing the deformed model, and
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— the perspective deformable matching (section 3.5 on page 100), which can handle also perspective
distortions and provides a calibrated version with which also a 3D pose instead of 2D transformation
parameters can be derived.

* an approach that describes a model by a set of significant image points:

— the descriptor-based matching (section 3.6 on page 108) matches a set of so-called interest points.
Similar to the perspective deformable matching it can handle perspective distortions and provides a
calibrated version with which also a 3D pose instead of 2D transformation parameters can be derived.

Additionally, the so-called point-based matching and the 3D matching are available. For the point-based match-
ing, corresponding points are used to combine overlapping images. This method is also called uncalibrated mo-
saicking. In the broader sense, the search for corresponding points is also a kind of matching, but the focus of this
Solution Guide is on matching of “2D objects”. The 3D matching consists of different methods and is shortly
introduced in the following section, but is also not subject to this Solution Guide. Please refer to the Solution
Guide I, chapter 11 on page 101 for further details on 3D matching.

1.5 Which Approach is Suitable in Which Situation?

The first step when selecting a matching approach is to decide if two or three spatial dimensions are needed.
Afterwards, further criteria like the needed transformation parameters or the object’s appearance within the images
can be included into the decision. The following sections provide you with the background for your decisions. For
a quick overview, this background is clearly illustrated in the figures of section 1.5.5 on page 13.

1.5.1 The Matching Approaches: 2D versus 3D

The different matching approaches are suitable for different applications. Some are suitable only for 2D objects
imaged from an orthogonal view, others can also handle perspective distortions, and some approaches even match
3D shapes in a full 3D space (see figure 1.2). Note that with the term “2D object” a fixed view on a planar object
part is meant and not the actual tangible object, which in reality is naturally three-dimensional. In contrast, the
“3D object” is an object that is viewed from arbitrary directions.

* 2D objects, imaged from an orthogonal view:

The correlation-based, shape-based, component-based, and local deformable matching can be used to
find 2D objects in images. The objects must be taken from an orthogonal view for the reference image as well
as for the search images. Theoretically, you can also use the perspective deformable or the descriptor-based
matching to find orthogonally imaged 2D objects, but as these are not as fast as the strict 2D approaches,
they are recommended rather for the case that the objects must be imaged from a perspective view.

* 2D objects, imaged from a perspective view:

The perspective deformable and the descriptor-based matching can be used to find planar object parts,
too. But in addition to the approaches used for the orthogonal view, the objects may be perspectively de-
formed. Additionally, if a camera calibration was applied, not only the 2D position and orientation but the
3D pose of the object can be derived. Although both approaches can be used also for orthogonally imaged
2D objects, they are recommended rather for the perspective case, as they are not as fast as the strict 2D
approaches.

* 3D objects:

The 3D matching searches for “real” 3D objects in 2D images. Here, different approaches are available. For
example, for the shape-based 3D matching, no reference image is used to create the model but a synthetic
3D model, in particular a DXF CAD model, must be provided. If a 3D object contains a characteristic planar
part which is visible in all search images, alternatively the calibrated perspective 2D approaches, i.e., the
perspective deformable or the descriptor-based matching, can be used, which are more convenient and
significantly faster. The 3D matching is needed only if more than one planar part of the object is needed to
differentiate the object from other image parts.

Note that the 3D matching is not part of this Solution Guide! For further information on 3D matching, please
refer to the Solution Guide I, chapter 11 on page 101.
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2D objects
model described by [ correlation—based matching ]
gray values
model described by shape-based matching
shapes of contours component-based matching
local deformable matching 3D matching
perspective deformable matching
model desgrlbed by [ descriptor—based matching
a set of points

rthogonal view - ; i
orthogonal vie arbitrary view (or deformations)

Figure 1.2: Available 2D and 3D matching approaches.

1.5.2 Decisions for 3D Objects and 2D Objects in 3D Space

If you search for a complex 3D object that differs from other objects in all three dimensions (see, e.g., figure 1.3),
the selection of the appropriate matching approach is easy as you have to use the 3D matching.

Figure 1.3: 3D object: the third dimension is needed to locate the object.

If the 3D object contains a unique but planar part that significantly differs from the other structures in the
expected images or if you search for a planar object that may be oriented arbitrarily in the 3D space you can also
use the perspective deformable or the descriptor-based matching, which can handle perspective distortions of
2D objects. Both approaches are faster and more convenient to use than the 3D matching.

Which of both perspective approaches to select depends on the specific application. If the object of interest is
expected to be anisotropically scaled in the search images, only the perspective deformable matching is suitable.
If it is expected to be only translated and rotated, both approaches are suitable and the appearance of the object
in the images must be taken into account. The most important difference between both approaches is the way
the object is modeled. The perspective deformable matching describes the model by the shapes of the object’s
contours. Thus, it is suitable for objects that contain clearly visible contours (see, e.g., figure 1.4).

In contrast, the descriptor-based matching describes the model by interest points. Thus, for objects that are rather
characterized by an arbitrary but fixed texture (see, e.g., figure 1.5), it is most probably to be preferred.
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Figure 1.4: 3D object: unique parts of the object lie in a plane and can be described by clearly visible contours.

Figure 1.5: 3D object: a plane object part is characterized by a specific texture.

1.5.3 First Decisions for Orthogonally Imaged 2D Objects

If you can image planar objects from an orthogonal view and only the 2D transformation parameters of the found
object instances are needed, the perspective deformable or the descriptor-based matching would lead to the desired
result as well, but the approaches that are strictly restricted to two dimensions are to be preferred as they are
significantly faster. The 2D approaches comprise the correlation-based, shape-based, component-based, and local
deformable matching.

Three of theses approaches are used only in specific situations:

¢ The component-based matching is applied only if the object of interest consists of different components
that move relative to each other (see section 3.3 on page 76 and figure 1.6) and only if the object is not
expected to be scaled in the search images.

* The local deformable matching is applied only if the object of interest is locally deformed, e.g., because
of a contorted surface (see section 3.4 on page 91 and figure 1.7). In contrast to the other 2D approaches, it
returns only the position but no orientation for the found model instance. In exchange, it allows to rectify the
image part containing the deformed object and returns a vector field that describes the actual deformations.

In most orthogonal 2D cases, you have to select one of the two remaining approaches, i.e., either the shape-based
matching or the correlation-based matching.
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Opening angle: 2P EA0T
Shift extent [0;1]: 0.5

Figure 1.6: Object consisting of two components that move relative to each other.

-

Figure 1.7: Object with local deformations.

1.5.4 Shape-Based vs. Correlation-Based Matching

To decide if the shape-based or the correlation-based matching is more appropriate for your specific application,
you should further investigate the requirements of your application.

For example, you should know which transformation parameters are needed to describe the relation of the object
in the search image to the object described by the model. Will the object be only translated and rotated or also
scaled? If a scaling is needed, correlation-based matching can not be used, but one of the shape-based matching
approaches must be used. Here, you can further choose between approaches that use uniform scaling or anisotropic
scaling, i.e., a scaling with different scaling factors for the x- and y-direction.

Additionally, the appearance of the object may change from image to image. Reasons can be, e.g., occlusions,
clutter, or illumination changes that may lead to a changing polarity of the object. Furthermore, the images may be
defocused or the object is a complex pattern in front of a complex background, i.e., it is textured. To get a robust
and fast result, the changes of the object’s appearance should be minimized as much as possible already when
imaging the object. Nevertheless, sometimes distortions like occlusions, clutter, or defocus can not be avoided.
These distortions have to be involved into the decision which approach to use for a specific application.

In particular, shape-based matching should be chosen if occlusions (see, e.g., figure 1.8) or clutter can not be
avoided or if a matching of objects with changing color is applied.

In contrast, correlation-based matching is suitable for objects with a random and changing texture or for objects
with a slightly changing shape (see figure 1.9). Additionally, correlation-based matching is to be preferred when
handling strongly defocused images (see figure 1.10).



1.5 Which Approach is Suitable in Which Situation?

Figure 1.8: Occlusions can be handled by shape-based matching.

Figure 1.9: Changing shapes can be handled by correlation-based matching.

1.5.5 Quick Guide to the Matching Approaches

Figure 1.11 to figure 1.16 clearly summarize the information needed to decide which matching approach is suitable
for a specific application. In particular,
e figure 1.11 summarizes the first coarse decision steps needed to select a matching approach,

e figure 1.12 and figure 1.13 illustrate the transformations that can be handled by the individual matching
approaches,

L]

figure 1.14 lists the transformation parameters that are returned by the individual matching approaches, and

e figure 1.15 and figure 1.16 introduce typical changes of the appearance of objects and show which charac-
teristics of the appearance can be handled by the individual matching approaches.

Figure 1.10: Defocused shapes can be handled by correlation-based matching.
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2D object |orthogonal view

object consists of components
between which angles and distances —» [ component-based matching]
may change, no scaling needed

scaling is needed >

_ _ shape—based matching
occlusions, clutter, or color cannot be avoided —>

object is characterized by specific texture /
rather than clearly visible contours >

correlation—based matching

\

images are highly defocused

object changes significantly

local deformations of the object’s contour /
expected, rectification or information >

[ local deformable matching ]
about the deformations needed

none of the above stated restrictions or

perspective view

one planar part of the object sufficientto ——— >
distinguish the object from other objects

All three dimensions needed to
distinguish the object from other objects ~— " 3D matching

perspective deformable or

descriptor-based matching

Figure 1.11: First decision steps when selecting the matching approach.

Translation Rotation Similarity Measure Anisotropic Scale
(Scale)

Figure 1.12: Geometric transformations of an object.

Matching Approach Translation | Rotation | Scaling Scaling
(2D) (2D) (uniform) | (anisotropic)
correlation-based X X - -
shape-based X X X X
component-based X X - -
local deformable X X X X
perspective deformable X X X X
descriptor-based X X X -

Figure 1.13: Transformations that can be handled by the matching approaches.



1.5 Which Approach is Suitable in Which Situation? B-15

Matching Approach Position | Angle Scale Scale Projective Pose
(2D) (2D) | (uniform) | (anisotropic) | Transformation | (3D)
Matrix

correlation-based
shape-based
component-based
local deformable
perspective deformable - - - - X X
descriptor-based - - - R X X

|
>~
>

Slisikalke

Figure 1.14: Transformation parameters returned by the matching approaches.

L

~

Occlusion Clutter lllumination Changes
(Missing Contours) (Additional Contours)

Figure 1.15: The object’s appearance may change, e.g., because of (from left to right): occlusions, clutter, and
illumination changes.

Matching Approach Occlusion | Clutter | Illumination Texture Color | Defocus
changes

correlation-based - - X (only X - X
linear)

shape-based
component-based

local deformable
perspective deformable
descriptor-based

o Ealaliel

X (needed) - -

il EeikalRe
ol Kol
il EeikalRe

Figure 1.16: Characteristics of the appearance the matching approaches can cope with.
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Chapter 2

General Topics

A general proceeding for a matching is to prepare the reference image, e.g., by a preprocessing (if necessary),
prepare the template, create the model from it, modify the already existing model (if necessary), store it to file (if
it should be reused), query information from it (which is needed, e.g., when reusing a previously stored model),
restrict the search space to speed up the following matching, search for the model in (possibly preprocessed) search
images, and further process the result of the matching.

In the following, we discuss different general topics that are valid for many matching approaches at once. In
particular,

* section 2.1 shows how to prepare a template,
* section 2.2 on page 25 shows how to reuse a model,
* section 2.4 on page 27 shows how to speed up the search, and

* section 2.5 on page 29 shows how to further process the results of matching.

2.1 Prepare the Template

After an optional preprocessing of the reference image, the first step of the matching is to prepare a template of the
object of interest. From this, a model is derived, which in a later step is used to locate instances of the object in
search images. In most cases, the model is derived from a reference image, which is reduced to a so-called template
image. How to obtain this template image using a region of interest (ROI) is described in section 2.1.1. The
influence of the ROI on the further matching process is described in section 2.1.2. For some matching approaches,
a synthetic model can be used instead of the template image. This can be either a synthetically created template
image or an XLD contour (see section 2.1.3 on page 20).

2.1.1 Reduce the Reference Image to a Template Image

To create a model from a reference image, which is the common way for most matching approaches, the reference
image must be reduced to a template image that contains only those structures of the reference image that are
needed to derive the model.

For this, you select a region within the reference image that shows the part of the image that should serve as the
template or, respectively, from which the model should be derived. After selecting the region, the domain of the
reference image is reduced to an ROI using the operator reduce_domain. The resulting image is our template
image, which is input to one of the approach-specific operators that are provided for the actual model generation.

Note that a region and therefore also the model can have an arbitrary shape (see the Quick Guide, section 2.1.1 on
page 10 for information to regions in HALCON). A region can be created in different ways, as is described in the
Solution Guide I, chapter 3 on page 25 and chapter 4 on page 33. Summarized, a region can be selected, e.g., by
the following means:
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* A region can be specified by explicitly defining its parameters. That is, HALCON offers multiple
operators to create regions, ranging from standard shapes like rectangles (gen_rectangle2) or ellipses
(gen_ellipse) to free-form shapes (e.g., gen_region_polygon_filled). These operators can be found
in the HDevelop menu Operators > Regions > Creation. To use the operators, you need the parameters
of the shape you want to create, e.g., the position, size, and orientation of a rectangle or the position and
radius of a circle. If these parameters are not explicitly known, you can get them using draw operators, i.e.,
operators that let you draw a shape on the displayed image and then return the shape parameters. These
operators are available, e.g., in the HDevelop menu Operators > Graphics > Drawing.

¢ A region can be specified by image processing using, e.g., a blob analysis. Then, the image is seg-
mented, e.g., using a threshold operator, and the obtained region is further processed to select only those
parts of it having specific features (commonly applied operators are, e.g., connection, £ill_up, and se-
lect_shape). In HDevelop, you can determine suitable features and values using the dialog Visualiza-
tion > Feature Inspection. More complex regions can be created using set theory, i.e., by adding or
subtracting standard regions using the operators union2 and difference. That way, e.g., also ring-shaped
ROISs can be created like is shown in section 2.1.2.2.

Before creating the ROI, it is often suitable to optimize the reference image by a preprocessing. Note that when
using shape-based matching, you can use an HDevelop Assistant that guides you through the matching process,
which includes also the preprocessing of the reference image as well as the creation of the ROI. How to use the
Matching Assistant is described in the HDevelop User’s Guide, section 7.3 on page 202.

Note that also the gray values outside of the ROI have an influence on the model generation. In particular, the
influence is approximately 2VumEevels pixels, with n being the number of pyramid levels. Thus, the gray values
outside of the ROI selected in the reference image should be similar to those that will occur in the search images.

2.1.2 Influence of the Region of Interest

The ROI used when creating the model determines the quality of the model and thus strongly influences the
success of the later search. If the ROI is selected inappropriately, no or the wrong image structures are identified
as instances of the model in the search images. So, if a matching is not successful or the result is inaccurate, you
should have a very critical look at your ROI and try to enhance it such that the model represents the object and
not the clutter that may be contained in the image. For approaches that are based on contours like shape-based
matching and local or perspective deformable matching, you can use the operator inspect_shape_model to
visually check a potential model. To create a model of good quality, you must pay attention to the proper selection
of the ROI’s center, i.e., the “point of reference” (see section 2.1.2.1) as well as to the proper selection of the ROI’s
outline (see section 2.1.2.2).

2.1.2.1 The Point of Reference

The ROI on the one hand influences the quality of the model and thus the general success of the subsequent
matching. On the other hand, also the numerical results returned by the matching are influenced. In particular, the
center point of the ROI by default acts as the so-called point of reference of the model for the estimated position,
rotation, and scale. Note that if no ROI is selected, the point of reference is located at the center of the image (see
figure 2.1).

The point of reference also influences the success of the later search, as an object is only found if the point of
reference lies within the image, or more exactly, within the domain of the image (see also section 3.2.7 on page
70). That is, if a point of reference is placed away from the actual object (as shown, e.g., in figure 2.1, left), a
later matching might fail although the object itself is fully contained in the search image, just because the point of
reference is not contained. Thus, it is very important to select an appropriate ROI even if the template object is
the only object in the image. Note that for some approaches the matches may be refined, which can result in found
matches having their point of reference slightly outside the image domain.

For some approaches, after creating a model, you can modify the point of reference. But as a modified point of
reference may lead to a decreased accuracy of the estimated position (see section 3.2.6.6 on page 69), if possible,
the point of reference should not be changed! Additionally, even if you modified the point of reference, the
test, if the point of reference lies within the domain of the search image, is always performed for the original point
of reference, i.e., the center point of the initially selected ROI. Thus, the selection of an appropriate ROI for the
template image is important right from the start.
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Figure 2.1: The point of reference depends on the selected ROI, not on the object or its bounding box.

2.1.2.2 The Outline of the ROI

The quality of the model and thus the accuracy of the result of the matching is influenced strongly by the model’s
outline, in particular, by its shape, size, and orientation.

To allow a good quality of the model, the ROI should be selected so that noise or clutter are minimized. This can
be obtained, e.g., by “masking” parts of the object that contain clutter. In figure 2.2, e.g., the model of a capacitor is
needed for shape-based matching. To exclude clutter as much as possible, instead of a circular ROI a ring-shaped
RO is created using the difference between two circular regions.

draw_circle (WindowHandle, ROI1Row, ROI1Column, ROI1Radius)
gen_circle (ROI1, ROI1Row, ROI1Column, ROI1Radius)
gen_circle (ROI2, ROI1Row, ROI1Column, ROI1Radius - 8)
difference (ROI1, ROI2, ROI)

reduce_domain (ModelImage, ROI, ImageROI)

model for full-circle ROI model for ring-shaped ROI

Figure 2.2: Masking the part of a region containing clutter.

Additionally, the accuracy of the location of the object is influenced by the number of contour points contained in
the model. That is, a model with many contour points can be found more accurately than a model with few contour
points (see figure 2.3).

Figure 2.3: Location accuracy: the accuracy is better for models with many contour points.
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Furthermore, the accuracy of a matching result can vary for different directions, depending on the direction of the
contours that are contained in the model. If, e.g, a model consists mainly of horizontal contours as depicted in
figure 2.4a, a good vertical accuracy can be obtained but the horizontal accuracy is bad. The model in figure 2.4b
contains contours in vertical and horizontal direction. Thus, a sufficient accuracy in both directions can be obtained.
The optimal pattern for a good accuracy in all directions would be a circular structure as shown in figure 2.4c. So
please, carefully select the model so that it contains enough contours that are perpendicular to the direction that
you want to inspect or measure after the matching.

Figure 2.4: Direction of accuracy depends on the direction of the contours: (a) good vertical but bad horizontal
accuracy, (b) sufficient accuracy in both direction, (c) optimal pattern for good accuracy in all directions.

The accuracy of the rotation angle returned by the matching depends on the one hand on the distance of the contour
points from the rotation center and on the other hand on the orientation of the contour in relation to the rotation
center (see figure 2.5). In particular, points that are far away from the rotation center can be determined more
accurately. That is, assuming the same number of model contours, the orientation of a contour can be determined
more accurately if the rotation center lies in the center of the contour and the contour is elongated.

Figure 2.5: Rotational accuracy: the angle for the (left) compact contour is not determined with the same accuracy
as the angle for the (right) extended model that is oriented radially to the rotation center.

2.1.3 Synthetic Models as Alternatives to Template Images

For some matching approaches, synthetic models can be used instead of a template image. Three means to work
with synthetic models are available:

e create a synthetic template image,

» use XLD contours directly as models (this can be applied only for specific matching approaches as listed in
section 2.1.3.2 on page 22), or

* use a DXF model to derive XLD contours, which then can be used directly as model (this can be applied
only for specific matching approaches as listed in section 2.1.3.3 on page 24) or which can be used to create
a synthetic template image.

A note of caution when using synthetic images:

On synthetic images there is a very sharp gray value transition from the the model to the background. Using such
an image for the model definition may lead to automatically estimated parameter values which are not suitable in
search images (where the gray values fluctuate and the transition is flattened). An example for such a parameter is
Contrast. Furthermore, sharp gray value transitions may lead to ringing artifacts on higher pyramid levels.
Hence, when generating the model using synthetic images we recommend to inspect the created model and even-
tually readjust certain automatically guessed parameters.
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model for full-circle ROI

model for ring—shaped ROI

Figure 2.6: Locating capacitors using (top) a circular ROI or (bottom) a complex ring-shaped ROI to derive the
model.

2.1.3.1 Synthetic Template Image

Synthetic template images are suitable mainly for correlation-based matching and all 2D approaches that are based
on contours, i.e., shape-based, component-based, local deformable, and perspective deformable matching.

Depending on the application it may be difficult to create a suitable model from a reference image because no
image is available that contains a perfect, easy to extract instance of the object. An example of such a case is
depicted in figure 2.6 for the location of capacitors. The task seems to be simple at first, as the capacitors are
represented by prominent bright circles on a dark background. But the shape model that is derived from a circular
ROI is faulty, because inside and outside the circle the image contains clutter, i.e., high-contrast points that are not
part of the object. A better result is obtained for a ring-shaped ROI that “masks” the parts of the object containing
clutter. Nevertheless, the model is still not perfect, because parts of the circle are missing and the model still
contains some clutter points.

In such a case, it is often better to use a synthetic template image. How to create such an image for the ca-
pacitors is explained below. To follow the example actively, start the HDevelop program %HALCONEXAMPLES?,\
solution_guide\matching\synthetic_circle.hdev.

Step 1:  Create an XLD contour

First, we create a circular region using the operator gen_ellipse_contour_x1ld. You can determine a suitable
radius by inspecting the image with the HDevelop dialog Visualization > Zoom Window or more conveniently
create the region using the ROI tool in HDevelop’s graphics window.
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Figure 2.7: Locating capacitors using a synthetic model: a) paint region into synthetic image; b) corresponding
model; ) result of the search.

RadiusCircle := 43

SizeSynthImage := 2 * RadiusCircle + 10

gen_ellipse_contour_x1ld (Circle, SizeSynthImage / 2, SizeSynthImage / 2, 0, \
RadiusCircle, RadiusCircle, 0, 6.28318, \
'positive', 1.5)

Note that the synthetic image should be larger than the region because also pixels outside the region are used when
creating the image pyramid for the shape-based matching, which in this case is the selected matching approach
(for image pyramids, see section 2.4.2 on page 28).

Step 2:  Create an image and insert the XLD contour

Then, we create an empty image using the operator gen_image_const and insert the XLD contour with the
operator paint_x1d. In figure 2.7a the resulting image is depicted.

gen_image_const (EmptyImage, 'byte', SizeSynthImage, SizeSynthImage)
paint_x1d (Circle, EmptyImage, SyntheticModelImage, 128)

Step 3:  Create the model

The model is created and trained using the synthetic image.

create_generic_shape_model (ModelID)
set_generic_shape_model_param (ModelID, 'iso_scale_min', 0.8)
set_generic_shape_model_param (ModelID, 'iso_scale_max', 1.2)
train_generic_shape_model (SyntheticModelImage, ModelID)

Figure 2.7b shows the corresponding model region and figure 2.7c shows the search results. Note how the image
itself, i.e., its domain, acts as the ROI in this example.

2.1.3.2 Models from XLD Contours

For the shape-based matching and the local and perspective deformable matching you do not have to create a
synthetic template image to derive a model from an XLD contour, because you can use the XLD contour directly
as model. Then, e.g., for shape-based matching, you do not have to provide an image and select an ROI, you can
simply call create_generic_shape_model (while e.g., for perspective deformable matching you use the xld-
version of the create operator: create_local_deformable_model_x1d). An example for the creation of a shape
model from circular XLD contours is given by the HDevelop example program %HALCONEXAMPLESY,\hdevelop\
Matching\Shape-Based\create_shape_model_x1d.hdev:
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gen_circle_contour_x1ld (ContCircle, 300, 300, MeanRadius, 0, 6.28318, \
'positive', 1)

create_generic_shape_model (ModelID)

set_generic_shape_model_param (ModelID, 'metric', 'ignore_local_polarity')

train_generic_shape_model (ContCircle, ModelID)

Note that when creating the model from XLD contours, there is no information about the polarity of the model
available (see figure 2.8, left). Thus, when creating the model the parameter metric’ must be set so that the
polarity is locally ignored. As this leads to a dramatically slow search, HALCON provides means to determine
the polarity for a found model instance. That is, you apply the slow search once only in a search image with
a polarity that is representative for your set of search images, project the model contours to the found position
within the search image (see figure 2.8, right), and call the operator set_shape_model_metric for shape-based
matching (or the corresponding one for other matching approaches). Then, polarity information is stored in the
model and for the following search passes the parameter metric’ can be set to a more suitable value, e.g., to
’use_polarity’. This proceeding is strongly recommended for a fast and robust search.

find_generic_shape_model (Image, ModelID, MatchResultID, NumMatchResult)
. accessing the indices of the matches
. that represent suitable drill holes
get_generic_shape_model_result (MatchResultID, O, 'hom_mat_2d', HomMat2D)
set_shape_model_metric (Image, ModelID, HomMat2D, 'use_polarity')
for Index := 2 to 9 by 1
read_image (Image, 'brake_disk/brake_disk_part_' + Index$'02d")
find_generic_shape_model (Image, ModelID, MatchResultID, NumMatchResult)
endfor

For further information about the polarity of models for shape-based matching, please refer to section 3.2.4.5 on
page 62.

O O

O O

Figure 2.8: (left) synthetic XLD model; (right) model projected into a representative search image to determine the
polarity of the model.

The Point of Reference

Just like for ROIs, a model created from XLD contours has its point of reference in its center of gravity.
Additionally to the aspects mentioned in section 2.1.2.1 on page 18 there is one more point to consider when
dealing with models created from XLDs.

Those models have their reference point located at the origin of the image coordinate system (see figure 2.9).
Therefore, part of the model has negative coordinates. This must be kept in mind when, e.g., adding a clutter region
for the model, as the spatial relation between model and clutter region must be considered. See section 3.2.6.5 on
page 66 to see how to set a clutter region for a model created from an XLD contour.
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Figure 2.9: The model (orange) created from XLD contours contains negative coordinates.

2.1.3.3 Models from DXF Files

The models needed for matching can also be derived from DXF files. In particular, you can extract the XLD
contours from the DXF file using the operator read_contour_x1d_dxf and then either use the XLD contours to
create a synthetic image or, if the selected matching approach allows it (see section 2.1.3.2 on page 22), use the
obtained XLD contours directly as model.

An example for the creation of a synthetic template image for shape-based matching using the XLD con-
tours extracted from an DXF file is given by the HDevelop example program %HALCONEXAMPLES,\hdevelop\
Applications\Object-Recognition-2D\pm_multiple_dxf_models.hdev. Examples for the creation of
perspective deformable models using the XLD contours extracted from DXF files directly as models are
given by the HDevelop example programs create_planar_calib_deformable_model_x1d.hdev and cre-
ate_planar_uncalib_deformable_model_x1d.hdev (see figure 2.10) in the directory %9HALCONEXAM-
PLES%/hdevelop/Matching/Deformable.

'Run' to continue Click 'Run' teo continue

Figure 2.10: (left) synthetic XLD model accessed from a DXF model; (right) model found in a search image.
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2.2 Reuse the Model

If you want to reuse created models or training results in other HALCON applications, all you need to do is to
store the relevant information in files and then read them again.

The HDevelop example program %HALCONEXAMPLESY\solution_guide\matching\reuse_model.hdev
shows exemplarily how to reuse a model for a uniformly scaled shape-based matching. First, the model is cre-
ated.

create_generic_shape_model (ModelID)
set_generic_shape_model_param (ModelID, 'iso_scale_min', 0.6)
set_generic_shape_model_param (ModelID, 'iso_scale_max', 1.4)

Then, the model is stored in a file using the operator write_shape_model. With the model, HALCON au-
tomatically saves the XLD contour, the point of reference, and the parameters that were used in the calls to
set_generic_shape_model_param.

write_shape_model (ModelID, ModelFile)

Note that the model region, i.e., the domain of the image, is not saved when storing the model. Thus, if you want
to reuse it, too, you can store the template image with write_image.

ModelRegionFile := 'model_region_nut.png'
write_image (ImageROI, 'png', O, ModelRegionFile)

The model is read using the operator read_shape_model.

read_shape_model (ModelFile, ReusedModelID)

Now, the model can be used as if it was created in the application itself. We set parameters specifying the search,
in this example the value for *min_score’, using set_generic_shape_model_param.

set_generic_shape_model_param (ReusedModelID, 'min_score', 0.8)

Model instances are searched and displayed on a new image.

read_image (SearchImage, 'rings_and_nuts')
find_generic_shape_model (SearchImage, ReusedModelID, MatchResultID, \
NumMatchResult)
get_generic_shape_model_result_object (Objects, MatchResultID, 'all', \
'contours')
dev_display (Objects)

Note that the information that is stored in a model and that can be queried after reading a model from file depends
on the selected approach.

2.3 About Subsampling - Image Pyramid

For all matching approaches except the descriptor-based matching a so-called image pyramid can be used to speed
up the search. In some approaches, the image pyramid is created for the search image as well as for the template
image. The pyramid consists of the original, full-sized image and a set of downsampled images. For example, if
the original image (first pyramid level) is of the size 600x400, the second level image is of the size 300x200, the
third level 150x100, and so on. The object is then searched first on the highest pyramid level, i.e., in the smallest
image. The results of this fast search are then used to limit the search in the next pyramid image, whose results are
used on the next lower level until the lowest level is reached. Using this iterative method, the search is both fast
and accurate. In case of noise it can even improve the robustness of the search, but for artificial images ringing
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Figure 2.11: The image and the model region at four pyramid levels (original size and zoomed to equal size).

artifacts may appear. Figure 2.11 depicts four levels of an example image pyramid together with the corresponding
model regions.

Note that when images are downsampled, different “events” occur. Primarily, specific structures disappear in
higher pyramid levels. As shown in figure 2.11, thin structures disappear sooner than thick ones. Note that “thin
structures” includes the different structures of the actual model but also the distances between them. Thus, small
structures of the model may disappear, but they can just as well be merged if the distances between them are small.
Additionally, the boundaries of structures blur in higher pyramid levels and their contrast decreases. In figure 2.12,
this effect is shown for a one pixel wide line.

Figure 2.12: In the pyramid, a (left) one pixel wide high contrast line blurs to a (right) broader line with a lower
contrast.
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For more complex patterns, this may lead to the disappearance of a pattern or even to the creation of a new pattern.
Examples for the disappearance of patterns that are caused by the blurring of structures are given for the small
characters in figure 2.11, for a regular grid of one pixel wide high contrast lines in figure 2.13, and for a pattern
that consists of high contrast rectangles with a distance of one pixel in figure 2.14. The latter example also shows
that new patterns can be created within the pyramid. Before the pattern is blurred to a homogeneous area, a
different regular pattern is created. Additionally, it is possible that new structures appear because the region of
interest was selected too large and thus, contours that were not part of the model in the first pyramid level become
part of the model in a higher level.

Figure 2.13: In the pyramid, a (left) grid with one pixel wide high contrast lines becomes a (right) homogeneous
gray-value area.
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Figure 2.14: In the pyramid, a (top) regular structure of rectangles with distances of one pixel shows the following
behavior: (bottom) level 1 and 2 still represent the correct model contours, level 3 and 4 produce new
regular patterns, and in level 5 a homogeneous gray-value area is obtained.

The blurring of structures induces also that besides the size also the contrast determines if a structure is still
contained in a higher pyramid level or not. After the downsampling, a high contrast structure of sufficient size may
still have enough contrast to be recognized, whereas a structure of the same size but with a low contrast can not be
distinguished from the background anymore. For example, in figure 2.15 the large but bright >V’ of the "MV Tec’
logo disappears in front of the bright background at a pyramid level in which the large high contrast characters are
still contained.

2.4 Speed Up the Search

There are different ways you can speed up the search. Here we present the general concepts of
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Figure 2.15: In the pyramid, a part of the model with a low contrast (the 'V’ of MVTec) disappears.

* restricting the search space (section 2.4.1)
* using subsampling (section 2.4.2)
* using a “greedy” search to reject candidates early (section 2.4.3)

* limiting the number of candidates directly or by requiring a minimal score (section 2.4.4)

2.4.1 Restrict the Search Space

An important concept in the context of finding objects is that of the so-called search space. Quite literally, this
term specifies where to search for the object. Depending on the matching approach, this space encompasses not
only the two dimensions of the image, but also other parameters like the possible range of scales and orientations
or the question of how much of the object must be visible. The more you can restrict the search space, the faster
the search will be.

The most obvious way to restrict the search space, which is suitable for all matching approaches, is to apply the
operator that is used to find the model in an image to an ROI instead of the whole image.

Other parameters that can be used to restrict the search space depend on the specific matching approach. Some
approaches are already very strict, others allow different changes of the object like rotation or scale and thus a
restriction of the search space is strongly recommended. Shape-based matching, e.g., allows arbitrary orientation
and scale changes as well as occlusions of the model instances in the search images. Thus, for shape-based
matching also the range of orientation and scale as well as the visibility, i.e., the amount of allowed occlusions of
the model instance in the image, should be restricted to speed up the search (see section 3.2 on page 53).

2.4.2 Subsampling

The image pyramid (see section 2.3 on page 25) can be used to speed-up the search. In order to benefit from the
subsampling, the images should have as much contrast as possible.

The parameter NumLevels, which you already specified when creating the model, allows you to use a different (in
most cases a more restrictive) value in the search process. By using the value 0 for NumLevels, the value specified
when creating the model is used.

Optionally, NumLevels can contain a second value, so that you can specify not only the highest but also the lowest
pyramid level used for the search. If the search is finished on a pyramid level that is higher than the first pyramid
level, which corresponds to the original, full-sized image, the search becomes faster. On the other hand, the search
is then also less robust and less accurate. If objects should be found also in images of poor quality, e.g., if the
object is defocused, deformed, or noisy, you can activate the increased tolerance mode by specifying the second
value negatively. Then, the matches on the lowest pyramid level that still provides matches are returned.

In case high noise is affecting the matching results you can also use adapt_shape_model_high_noise in order
to estimate the lowest pyramid level for the shape model.



2.5 Use the Results of Matching

B-29

2.4.3 The Concept of Greediness

Greediness is a trade between thoroughness and speed. With the parameter Greediness you can influence
the search algorithm itself and thereby trade thoroughness against speed. If you select the value O, the search is
thorough, i.e., if the object is present (and within the allowed search space and reaching the minimum score), it
will be found. In this mode, however, even very unlikely match candidates are also examined thoroughly, thereby
slowing down the matching process considerably.

The main idea behind the “greedy” search algorithm is to abort the comparison of a candidate with the model when
it seems unlikely that the minimum score will be reached. In other words, the goal is not to waste time on hopeless
candidates. This greediness, however, can have unwelcome consequences: In some cases a perfectly visible object
is not found because the comparison “starts out on a wrong foot” and is therefore classified as a hopeless candidate
and broken off.

You can adjust the Greediness of the search, i.e., how early the comparison is broken off, by selecting values
between O (no break off: thorough but slow) and 1 (earliest break off: fast but unsafe). Note that the parameters
Greediness and MinScore interact, i.e., you may have to specify a lower minimum score in order to use a greedier
search. Generally, you can reach a higher speed with a high greediness and a sufficiently lowered minimum score.

2.4.4 Limit the Number of Candidates: MinScore and NumMatches

The search speed can be increased by limiting the number of candidates tracked through the pyramid levels. Both
parameters MinScore and NumMatches have the intention to limit the number of tracked and returned candidates,
but they do in different ways.

With MinScore you set a required score every candidate must have on every level of the pyramid. Thus, when a
candidate gets a lower score on a higher pyramid level it gets rejected. As a consequence the candidate does not
get tracked down to the lowest level, even if he would obtain the best score on the original image (the first pyramid
level, see section 2.3 on page 25).

With NumMatches you limit the number of instances to be returned to a maximum of the set number. This limit
generally applies to every pyramid level (with exceptions as e.g., shape-based matching with clutter set which is
explained in set_generic_shape_model_param). The interplay with MinScore may lead to unwanted rejec-
tions.

Example: Assume our pyramid has two levels and we find 3 candidates on the top pyramid level: A, B, and C. On
the top level they get the scores S%: 0.92, 5%: 0.82, SZ: 0.81 and on the lower level they get the score S: 0.93,
Sg:0.79, S&: 0.80. What happens when we would have set for this search MinScore = 0.8 and NumMatches =
2?7 On the top level we find 3 all candidates. We keep only the best 2 candidates A and B, while C gets rejected.
The search continues on the next lower pyramid level. Tracking the candidates down, they get a new score on this
lower level. So we reject B and end up with A, thus only 1 match. C would have got a score high enough but we
rejected it already earlier. If we would have kept all 3 candidates from the top level, thus not reject C, we would
have found 2 matches. This explains why the number of matches or even the found match can differ when setting
NumMatches.

Also the candidate with the highest score on the top level is not necessarily the candidate with the highest score on
the lowest level. For this reason the returned instance for e.g., NumMatches set to 1 can differ from the instance
with the highest score returned when more matches are returned by setting NumMatches to a value higher 1.

As a consequence we recommend to return several instances and then select the instance with the highest score in
case multiple objects with a similar score are expected, but only the one with the highest score is of interest.

2.5 Use the Results of Matching

The main goal of matching is to locate objects in images, i.e., above all get the position and in most cases also the
orientation of a model instance in an image. Furthermore, many approaches return additional information like the
scale of the object or a score that evaluates the quality of the returned object location. This chapter describes how
to use the results returned by matching operators to locate the found instances in the image. The different matching
approaches are suitable to different tasks and so they return different results. As a consequence the way how an
instance can be located differs. The following sections

* list the individual results of the different matching approaches (section 2.5.1),
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« introduce the different types of transformations often needed to further process the results of matching (sec-
tion 2.5.2 on page 31),

» show how to display matches and perform transformations using a 2D position and orientation (section 2.5.3
on page 33),

* show how to visualize matches and perform transformations using a 2D homography (section 2.5.4 on page
41),

* show how to visualize matches and perform transformations using a 3D pose (section 2.5.5 on page 43), and

* shortly discuss the returned score (section 2.5.6 on page 45).

2.5.1 Results of the Individual Matching Approaches

To locate objects in images, information like the position and orientation of the searched objects must be returned
by the matching. This information is available in different representations, depending on the selected matching
approach. That is, for a strict 2D matching the position and orientation are returned separately, i.e., the position
consists of a row and a column value and the orientation consists of a single value describing the angle. In contrast,
the uncalibrated perspective approaches return the position and orientation together in a projective transformation
matrix (2D homography) and the calibrated perspective approaches return them together in a 3D pose. Besides
the position and orientation, many approaches return further information like the scale of the found object or
information about the quality of the match, which is called score.

The results of the individual matching approaches are listed below. How to further process them is described in
the following sections.

Matching Approach Operator(s) and Results

find_ncc_model:
Position, rotation, and score of the found model.

correlation-based matching find_ncc_models:
Positions, rotation angles, and scores for multiple models, and
the information to which model each instance belongs.

Matches found using find_generic_shape_model.

* get_generic_shape_model_result:
Position, rotation, scaling factors, and score of each found model instance.
Additionally the transformation matrix and possible clutter values are
returned.

* get_generic_shape_model_result_object:
Model contours transformed according to the matching result.
Additionally possibly regions where no clutter should occur.

shape-based matching

find_component_model:

Start and end index for each found instance of the component model,
component-based matching a score for the found instances of the component model, positions

and angles of the found component matches, the scores for the

found matches, and the indices of the found components.

find_local_deformable_model:
local deformable matching Position, vector field, rectified image (part), contours of the
deformed object, and score of the found model.

find_planar_calib_deformable_model:
3D pose, six mean square deviations or the 36
perspective deformable matching  covariances of the 6 pose parameters, and score.

find_planar_uncalib_deformable_model:
2D homography and score.

find_calib_descriptor_model:

descriptor-based matching 3D pose and score.

find_uncalib_descriptor_model:
2D homography and score.
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Figure 2.16: Typical affine transformations: a) translation along two axes; b) rotation around the IC center; ¢) scaling
around the IC center; d) combining a, b, and c; e) rotation around the upper right corner; f) scaling
around the right IC center.

2.5.2 About Transformations

HALCON provides operators for different types of transformations. For the strict 2D matching approaches, 2D
affine transformations are available, which allow to, e.g., translate, rotate, or scale 2D objects (see section 2.5.2.1).
For the uncalibrated perspective matching approaches, 2D projective transformations are provided, which are ap-
plied in the context of perspective views (see section 2.5.2.2 on page 32). Finally, for the calibrated perspective
matching approaches, 3D affine transformations are available. You can find more information about 3D transfor-
mations in the Solution Guide III-C - 3D Vision.

2.5.2.1 2D Affine Transformations

“Affine transformation” is a technical term in mathematics describing a certain group of transformations. Fig-
ure 2.16 shows the types that occur, e.g., in the context of the shape-based matching: An object can be translated
(moved) along the two axes, rotated, and scaled. In figure 2.16d, all three transformations were applied in a
sequence.

Note that for the rotation and the scaling a fixed point exists, around which the transformation is performed. It
corresponds to the point of reference described in section 2.1.2.1 on page 18. In figure 2.16b, e.g., the IC is rotated
around its center, in figure 2.16e around its upper right corner. The point is called fixed point because it remains
unchanged by the transformation.

The transformation can be thought of as a mathematical instruction that defines how to calculate the coordinates
of object points after the transformation. Fortunately, you need not worry about the mathematical part. HALCON
provides a set of operators that let you specify and apply transformations in a simple way.

HALCON allows to transform pixels, regions, images, and XLD contours by providing the operators
affine_trans_pixel, affine_trans_region, affine_trans_image, and affine_trans_contour_x1d.
The transformation in figure 2.16d corresponds to the line



B-32

General Topics

affine_trans_region (IC, TransformedIC, ScalingRotationTranslation, \
'nearest_neighbor')

The parameter ScalingRotationTranslation is a so-called homogeneous transformation matrix that describes
the desired transformation. You can create this matrix by adding simple transformations step by step. First, an
identity matrix is created with hom_mat2d_identity.

hom_mat2d_identity (EmptyTransformation)

Then, the scaling around the center of the IC is added with hom_mat2d_scale.

hom_mat2d_scale (EmptyTransformation, 0.5, 0.5, RowCenterIC, ColumnCenterIC, \
Scaling)

Similarly, the rotation and the translation are added with hom_mat2d_rotate and hom_mat2d_translate.

hom_mat2d_rotate (Scaling, rad(90), RowCenterIC, ColumnCenterIC, \
ScalingRotation)
hom_mat2d_translate (ScalingRotation, 100, 200, ScalingRotationTranslation)

Please note that in these operators the coordinate axes are labeled with x and y instead of Row and Column!
Figure 2.16a clarifies the relation.

Transformation matrices can also be constructed by a sort of “reverse engineering”. In other words, if the result
of the transformation is known for some points of the object, you can determine the corresponding transformation
matrix. If, e.g., the position of the IC center and its orientation after the transformation is known, you can get
the corresponding matrix via the operator vector_angle_to_rigid and then use this matrix to compute the
transformed region.

vector_angle_to_rigid (RowCenterIC, ColumnCenterIC, 0, \
TransformedRowCenterIC, TransformedColumnCenterIC, \
rad(90), RotationTranslation)
affine_trans_region (IC, TransformedIC, RotationTranslation, \
'nearest_neighbor')

If a pixel, image, or contour should be transformed, the proceeding is similar, but instead of
affine_trans_region, you apply the operator affine_trans_pixel, affine_trans_image, or
affine_trans_contour_x1d, respectively (see, e.g., section 2.5.3.1).

2.5.2.2 2D Projective Transformations

A 2D projective transformation matrix describes a perspective projection as illustrated in figure 2.17. It consists of
33 values. Note that if the last row contains the values [0,0,1], it corresponds to a homogeneous transformation
matrix, i.e., it describes a 2D affine transformation, which is a special case of the 2D projective transformation.

HALCON provides several operators to apply projective transformations. Similar to the affine transforma-
tion, with a projective transformation you can transform different HALCON structures like pixels (projec-
tive_trans_pixel), regions (projective_trans_region), images (projective_trans_image), and XLD
contours (projective_trans_contour_x1ld). But now, also perspective deformations are considered by the
transformation. An example for a 2D projective transformation is described in more detail in section 2.5.4 on page
41.

Note that in the context of matching, projective transformation matrices are even easier to handle than affine trans-
formations, as you do not need to create a transformation matrix from corresponding points or by adding several
transformation steps. Instead, the projective transformation matrix is directly returned by one of the operators that
are used for the uncalibrated matching of perspectively distorted objects, and can be directly used to apply one of
the above stated transformations.
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Figure 2.17: Perspective projection.

2.5.3 Display Matches and Perform Transformations Using a 2D Position and
Orientation

The estimated position and orientation (2D pose) for a model instance of a strict 2D matching can be used in
different ways. They can be used, e.g.,

e to display the found instance (section 2.5.3.1 for a single match and section 3.1.4.5 on page 51 for multiple
matches),

e to align ROIs for other inspection tasks, e.g., measuring (section 2.5.3.2 on page 35), or

e to transform the search image so that the object is positioned as in the template image (section 2.5.3.3 on
page 38).

For most matching approaches, the position and orientation returned by the matching is determined relative to the
model. That is, no absolute position but the distance to the point of reference is returned. The point of reference
is defined by the center of the ROI that was used to create the model (see figure 2.18a). By default, the point of
reference for the model is moved to the coordinates (0,0). But even then, as different tasks in HALCON need
different image coordinate systems (the positions for pixel-precise regions differ from those used for subpixel-
precise XLD contours by 0.5 pixels, see page 37 and the chapter “Transformations > 2D Transformations” in the
Reference Manual), the estimated position returned by the matching can not be used directly but is optimized
for the creation of the transformation matrices that are used to apply the applications described above. Additionally,
in the template image the object is taken as not rotated, i.e., its angle is O, even if it seems to be rotated as, e.g., in
figure 2.18b.

2.5.3.1 Display the Matches

In many cases, especially during the development of a matching application, it is useful to display the matching
results in the search image. This can be realized by different means. If the model is represented by a contour,
we recommend to overlay the XD contour on the search image, because XLD contours can be transformed more
precisely and quickly than regions. Additionally, by displaying the contour of the model not only the position and
orientation of the found model instance but also the deviation from the model’s shape can be visualized.

If no contour is available, we recommend to overlay the ROI that was used to create the model on the search
image. In some cases, the additional visualization of points is suitable. For example, for the descriptor-based
matching, the interest points of the model or a found model instance can be queried as described in section 3.6.3
on page 111 and displayed using, e.g., gen_cross_contour_x1d.

For shape-based matching the found instances and their transformation matrix can directly be retrieved using
get_generic_shape_model_result_object and get_generic_shape_model_result, respectively. For
correlation-based matching the procedure dev_display_ncc_matching_results can be used to visualize the
results In the following we show how the steps done within this procedure to overlay the XLD contour or the ROI
on the search image.

The HDevelop program %HALCONEXAMPLESY\hdevelop\Matching\Correlation-Based\
ncc_matching_workflow.hdev uses of a correlation-based matching. Once we have a successful match
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Figure 2.18: The position and orientation of a match: a) The center of the ROI acts as the default point of reference;
b) In the template image, the orientation is always 0.

Step 1:  Access the XLD contour containing the model

The XLD version of the model is accessed.

get_ncc_model_region (ModelRegion, ModelID[Index])
gen_contour_region_x1d (ModelRegion, ModelContours, 'border_holes')

Step 2:  Determine the affine transformation

A visualization is only reasonable if the matching was successful. Thus, the results of the matching are checked.
If the matching failed, the operator find_ncc_model returns empty tuples in parameters like Row. If the matching
was successful, the corresponding affine transformation can be constructed.

hom_mat2d_identity (HomMat2DIdentity)
hom_mat2d_rotate (HomMat2DIdentity, Angle[Match], O, O, HomMat2DRotate)
hom_mat2d_translate (HomMat2DRotate, Row[Match], Column[Match], HomMat2DTranslate)

Note that the transformation matrix can also be constructed as shown in section 2.5.3.2. Doing so, remember that
the initial XD contour of the model is located at the origin of the image and not at the position of the model in
the reference image.

Step 3:  Transform the XLD

Now, the transformation is applied to the XLD contour of the model using the operator
affine_trans_contour_x1d and the transformed contour is displayed. Figure 3.1 on page 48 in section 3.1.1
shows the search image and the overlaid XLD contour.

affine_trans_contour_xld (ModelContours, ContoursAffinTrans, HomMat2DTranslate)
dev_display (ContoursAffinTrans)

The general procedure for the projection of a contour or a region is the same.

The main difference between the projection of a contour and the projection of a region regards the initial
position of the contour or region. The initial position of the contour or region always describes the “relative”
position of the point of reference, i.e., its distance to the default point of reference. The default position of the
point of reference is (0,0), i.e., it is the origin of the image and not the position of the model in the reference
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image. But depending on the structure that has to be transformed, the “relative” position can change. Whereas
the XLD contour of a shape model is derived from the model and thus its point of reference is also the point of
reference of the model, a region naturally was defined before the model was created. Thus, its point of reference
describes the position of the model in the reference image instead of the point of reference of the later created
model. That is, instead of (0,0), the values obtained by the operator area_center for the respective region have
to be passed as the first two parameters to vector_angle_to_rigid.

Furthermore, if you have changed the reference point of a model (see, e.g., section 2.1.2 on page 18), the values to
insert as initial position change in the following way: If you query an XLD contour from a model after changing
the point of reference, nothing changes. The initial position still is (0, 0), only another part of the model serves as
point of reference. If you change the point of reference after querying the XLD contour or if you want to transform
aregion, which is naturally also accessed before changing the point of reference, you have to add the values of the
initial point of reference to the values of the new point of reference.

2.5.3.2 Align ROIs for other Inspection Tasks

The results of matching can be used to align ROIs for other image processing steps. i.e., to position them relative
to the image part acting as the model. This method is suitable, e.g., if the object to be inspected is allowed to move
or if multiple instances of the object are to be inspected at once.

The HDevelop example program %HALCONEXAMPLESY\solution_guide\matching\
align_measurements.hdev, e.g., uses shape-based matching to inspect multiple razor blades by measur-
ing the width and the distance of their “teeth”.

First, a shape model is created that will be used later to align the measurement ROIs. Figure 2.19a shows the model
ROI for the shape model, which consists of two united regions, and figure 2.19b shows the corresponding shape
model.

Then, the inspection task is realized with the following steps:
Step 1:  Position the measurement ROIs for the model blade

Two rectangular measurement ROIs are generated with gen_rectangle?2 so that they are placed over the teeth of
the razor blade that acts as the model (see figure 2.19c¢).

RectlRow := 244

Rect1Col := 73

DistColRectlRect2 := 17

Rect2Row := RectlRow

Rect2Col := Rectl1Col + DistColRectlRect2

RectPhi := rad(90)

RectLengthl := 122

RectLength2 := 2

gen_rectangle2 (MeasureROI1, RectlRow, Rect1Col, RectPhi, RectLengthl, \
RectLength2)

gen_rectangle2 (MeasureROI2, Rect2Row, Rect2Col, RectPhi, RectLengthl, \
RectLength2)

To be able to transform them later along with the XLD contour of the model, they are moved with move_region
to lie on the XLD model, whose point of reference is the origin of the image (see figure 2.20a on page 37), which
is queried with area_center. Note that before moving the regions the clipping must be switched off, otherwise
the region parts that are moved “outside” the image are clipped. The distances between the center of the model
ROI and the centers of the rectangular measure ROIs define the new reference positions for the measure ROIs (see
figure 2.20b on page 37).

area_center (ModelROI, Area, CenterROIRow, CenterROIColumn)

get_system ('clip_region', OriginalClipRegion)

set_system ('clip_region', 'false')

move_region (MeasureROI1, MeasureROI1Ref, -CenterROIRow, -CenterROIColumn)
move_region (MeasureROI2, MeasureROI2Ref, -CenterROIRow, -CenterROIColumn)
set_system ('clip_region', OriginalClipRegion)

DistRect1CenterRow := RectlRow - CenterROIRow

DistRect1CenterCol := RectlCol - CenterROIColumn

DistRect2CenterRow := Rect2Row - CenterROIRow

DistRect2CenterCol := Rect2Col - CenterROIColumn
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Figure 2.19: Aligning ROls for inspecting parts of a razor: a) ROls for the model; b) the model; c) measuring ROls;
d) inspection results with zoomed faults.

Step 2:  Find all razor blades

Now, all instances of the shape model are searched for in the search image using find_generic_shape_model.

find_generic_shape_model (SearchImage, ModelID, MatchResultID, \
NumMatchResult)

Step 3: Determine the affine transformation

For each instance, i.e., for each found razor blade, the transformation between the model and the
found model instance is calculated with vector_angle_to_rigid and applied to the XLD model with
affine_trans_contour_x1d so that it lies over the found model instance in the search image.



2.5 Use the Results of Matching

B-37

Model Origin
@« @0

Distance 1 Distance 2

,,,,, i Distance 1 Distance 2

~

[ ] Q@ «——> @ «——>»0
Center of Center of Center of Center of
Rectangle 1 Model ROI |Rectangle 2 [ FI Model ROI
n n
1 1
a) b)

Figure 2.20: Align the measure ROls relative to the shape model: a) first, move the measure ROlIs to lie on the XLD
model; b) then, determine the new reference positions for the measure ROls by their distance to the
model.

for I := 0 to NumMatchResult - 1 by 1
get_generic_shape_model_result (MatchResultID, Indices[I], 'row', \
RowCheck)
get_generic_shape_model_result (MatchResultID, Indices[I], 'column', \
ColumnCheck)
get_generic_shape_model_result (MatchResultID, Indices[I], 'angle', \
AngleCheck)
vector_angle_to_rigid (0, 0, O, RowCheck, ColumnCheck, AngleCheck, \
Movement0fObject)
affine_trans_contour_xld (ModelContours, ModelAtNewPosition, \
Movement0f0Object)

Step 4: Create measurement objects at the corresponding positions

Then, affine_trans_pixel is applied to calculate the corresponding positions of the measure ROIs, at which
the measure objects are created.

affine_trans_pixel (MovementOfObject, DistRect1CenterRow, \
DistRect1CenterCol, RectiRowCheck, Rect1ColCheck)
affine_trans_pixel (MovementOfObject, DistRect2CenterRow, \
DistRect2CenterCol, Rect2RowCheck, Rect2ColCheck)
RectPhiCheck := RectPhi + AngleCheck
gen_measure_rectangle2 (RectlRowCheck, Rect1ColCheck, RectPhiCheck, \
RectLengthl, RectLength2, Width, Height, \
'bilinear', MeasureHandlel)
gen_measure_rectangle2 (Rect2RowCheck, Rect2ColCheck, RectPhiCheck, \
RectLengthl, RectLength2, Width, Height, \
'bpilinear', MeasureHandle2)

Note that you must use the operator affine_trans_pixel and not affine_trans_point_2d, because the
latter uses a different coordinate system. In particular, it uses the standard image coordinate system for which a po-
sition corresponds to the center of a pixel (see figure 2.21, right). In contrast, the operators affine_trans_pixel,
affine_trans_contour_xld, affine_trans_region, and affine_trans_image use the coordinate system
depicted in figure 2.21 (left).

In the example application, the individual razor blades are only translated but not rotated relative to the model
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Figure 2.21: (left) image coordinate system used for the matching methods and operators like affine_trans_pixel;
(right) standard image coordinate system.

position. Thus, instead of applying the full affine transformation to the measure ROIs and then creating new
measure objects, you can use the operator translate_measure to translate the measure objects themselves. The
example program contains the corresponding code. You can switch between the two methods by modifying a
variable at the top of the program.

Step 5:  Measure the width and the distance of the “teeth”

Now, the actual measurements are performed using the operator measure_pairs.

measure_pairs (SearchImage, MeasureHandlel, 2, 25, 'negative', 'all', \
RowEdgell, ColEdgell, Ampll, RowEdge21, ColEdge21, \
Amp21, Widthl, Distancel)

measure_pairs (SearchImage, MeasureHandle2, 2, 25, 'negative', 'all', \
RowEdgel12, ColEdgel2, Ampl12, RowEdge22, ColEdge22, \
Amp22, Width2, Distance?2)

Step 6: Inspect the measurements

Finally, the measurements are inspected. If a tooth is too short or missing completely, no edges are extracted at this
point resulting in an incorrect number of extracted edge pairs. In this case, the faulty position can be determined
by checking the distance of the teeth. Figure 2.19d shows the inspection results for the example.

NumberTeethl := |Width1|
if (NumberTeethl < 37)
for J := 0 to NumberTeethl - 2 by 1
if (Distancel[J] > 4.0)
RowFault := round(0.5 * (RowEdgell[J + 1] + RowEdge21[J]))
ColFault := round(0.5 * (ColEdgel1[J + 1] + ColEdge21[J]))
disp_rectangle2 (WindowHandle, RowFault, ColFault, O, 4, 4)

Please note that the example program is not able to display the fault if it occurs at the first or the last tooth.

2.5.3.3 Align the Search Results

The previous sections showed how to use the matching results to determine the so-called forward transformation.
This was used to transform objects from the model into the search image or, respectively, to transform ROIs that
were specified in the reference image into the search image.

You can also determine the inverse transformation which transforms objects from the search image back into the
reference image. With this transformation, you can align the search image (or parts of it), i.e., transform it such
that the matched object is positioned as it was in the reference image. This method is useful if the following image
processing step is not invariant against rotation, e.g., OCR or the variation model.

Note that by alignment the image is only rotated and translated. To remove perspective or lens distortions, e.g., if
the camera observes the scene under an oblique angle, you must rectify the image first (see section 3.2.11 on page
75 for more information).
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Inverse Transformation

The inverse transformation can be determined and applied in a few steps. The task of the HDevelop program %HAL-
CONEXAMPLESY\solution_guide\matching\rectify_results.hdev, e.g., is to extract the serial number on
CD covers (see figure 2.22). The matching is realized using a shape-based matching.

Step 1:  Calculate the inverse transformation

As a first step the transformation matrix is calculated. This is done as described in section 2.5.2.1 on page 31, with
the difference that it is calculated based on the absolute coordinates of the point of reference, because the results
have to be transformed such that they appear as in the reference image.

get_generic_shape_model_result (MatchResultID, 'best', 'row', \

RowMatch)
get_generic_shape_model_result (MatchResultID, 'best', 'column', \
ColumnMatch)
get_generic_shape_model_result (MatchResultID, 'best', 'angle', \
AngleMatch)

vector_angle_to_rigid (CenterModelR0IRow, CenterModelROIColumn, O, \
RowMatch, ColumnMatch, AngleMatch, \
MovementOfObject)

Note, this transformation matrix can also be created in different ways, e.g., by operating the model transformation
matrix on the original center of Rol.

You can invert a transformation easily using the operator hom_mat2d_invert.

hom_mat2d_invert (MovementOfObject, InverseMovementOfObject)

Step 2:  Rectify the search image

The inverse transformation is applied to the search image using the operator affine_trans_image. Figure 2.22d
shows the resulting rectified image of a different CD. Undefined pixels are marked in gray.

affine_trans_image (SearchImage, RectifiedSearchImage, \
InverseMovementOfObject, 'constant', 'false')

Step 3:  Extract the numbers

The serial number is positioned correctly within the original ROI and can be extracted by blob analysis without
problems. Figure 2.22e shows the result, which could then, e.g., be used as the input for OCR.

reduce_domain (RectifiedSearchImage, NumberROI, RectifiedNumberROIImage)
threshold (RectifiedNumberROIImage, Numbers, O, 128)
connection (Numbers, IndividualNumbers)

Unfortunately, the operator affine_trans_image transforms the full image even if its domain was restricted with
the operator reduce_domain. In a time-critical application it may therefore be necessary to crop the search image
before transforming it.

Image Cropping

In the following, the steps needed for the image cropping are described. Additionally, they are visualized in
figure 2.23.

Step 1:  Crop the search image

First, the smallest axis-parallel rectangle surrounding the transformed number ROI is computed using the operator
smallest_rectanglel. Then, the search image is cropped to this part with crop_rectanglel. Figure 2.23b
shows the resulting image overlaid on a gray rectangle to facilitate the comparison with the subsequent images.
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Figure 2.22: Rectify the search results: a) ROlIs for the model and for the number extraction; b) the model; ¢) found
model and number ROI at matched position; d) rectified search image (only relevant part shown);
e) extracted numbers.

affine_trans_region (NumberROI, NumberROIAtNewPosition, \
Movement0fObject, 'nearest_neighbor')
smallest_rectanglel (NumberROIAtNewPosition, RowRectl, ColumnRectl, \
RowRect2, ColumnRect?2)
crop_rectanglel (SearchImage, CroppedSearchImage, RowRectl, ColumnRectl, \
RowRect2, ColumnRect2)

Step 2:  Create an extended affine transformation

In fact, the cropping can be interpreted as an additional affine transformation, in particular, as a translation
by the negated coordinates of the upper left corner of the cropping rectangle (see figure 2.23a). We there-
fore add this transformation to the transformation that describes the movement of the object using the operator
hom_mat2d_translate. Then, we invert this extended transformation with the operator hom_mat2d_invert.

hom_mat2d_translate (MovementOfObject, -RowRectl, -ColumnRectl, \
MoveAndCrop)
hom_mat2d_invert (MoveAndCrop, InverseMoveAndCrop)

Step 3:  Transform the cropped image

Using the inverted extended transformation, the cropped image can easily be rectified with the operator
affine_trans_image (figure 2.23c) and then be reduced to the original number ROI (figure 2.23d) in order
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Figure 2.23: Rectifying only a part of the search image: a) smallest image part containing the ROI; b) cropped
search image; c) result of the rectification; d) rectified image reduced to the original number ROI.

to extract the numbers.

affine_trans_image (CroppedSearchImage, RectifiedROIImage, \
InverseMoveAndCrop, 'constant', 'true')
reduce_domain (RectifiedROIImage, NumberROI, RectifiedNumberROIImage)

2.5.4 Visualize Matches and Perform Transformations Using a 2D Homography

When applying one of the uncalibrated perspective matching approaches, in contrast to the pure 2D matching
approaches no positions, orientations, and scales but projective transformation matrices are returned. These can
be used to apply a projective transformation, e.g., to visualize the matching result by overlaying a structure of the
reference image on the match in the search image. Note that different HALCON structures like pixels, regions,
images, or XLD contours can be transformed that way (see also section 2.5.2.2 on page 32).

Depending on the selected matching approach, typically different structures are transformed. For the uncalibrated
perspective deformable matching, e.g., the model contour is transformed to visualize the match, whereas for the
uncalibrated descriptor-based matching the region that was used to create the model may be transformed and
visualized.

An example for a projective transformation in the context of an uncalibrated perspective deformable match-
ing is given in the HDevelop example program }HALCONEXAMPLES)\hdevelop\Applications\Traffic-
Monitoring\detect_road_signs.hdev (see figure 2.24).



B-42

General Topics

Figure 2.24: The contours of the model are projected into the search image.

Step 1:  Find the perspective deformable model

There, the model of a road sign is searched in an image using find_planar_uncalib_deformable_model,
which returns the projective transformation matrix HomMat2D.

find_planar_uncalib_deformable_model (ImageChannel, Models[Index2], O, \
0, ScaleRMin[Index2], \
ScaleRMax[Index2], \
ScaleCMin[Index2], \
ScaleCMax[Index2], 0.85, 1, 0, 2, \
0.4, [1, [1, HomMat2D, Score)

Step 2:  Transform the model contours

After the matching, the model contours are queried from the model with get_deformable_model_contours.
The returned contours are by default positioned at the origin of the reference image. Thus, to visualize them at the
position of the match, the contour must be transformed using the returned projective transformation matrix. This
transformation is applied with projective_trans_contour_x1ld.

get_deformable_model_contours (ModelContours, Models[Index2], 1)

projective_trans_contour_x1ld (ModelContours, ContoursProjTrans, \
HomMat2D)

dev_display (ContoursProjTrans)

An example for a projective transformation in the context of an uncalibrated descriptor-based matching is
the HDevelop example program %HALCONEXAMPLESY\hdevelop\Applications\Object-Recognition-2D\
detect_brochure_pages.hdev (see figure 2.25).

Step 1:  Find the descriptor model

There, the projective transformation matrix HomMat2D is returned by find_uncalib_descriptor_model.

find_uncalib_descriptor_model (ImageGray, ModelIDs[Index2], \
'threshold', 600, \
['min_score_descr', \
'guided_matching'], [0.003, 'on'l, \
0.25, 1, 'num_points', HomMat2D, \
Score)

Step 2:  Access and visualize the interest points

The interest points are queried with get_descriptor_model_points. In contrast to the contours of a perspective
deformable model, which can only be queried for the model, the points of the descriptor model can also be queried
for the specific match (Set set to ’search’). Thus, they do not have to be transformed anymore.
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Figure 2.25: (left) Model brochure page with ROl and interest points; (right) search image with projected interest
points and ROI.

get_descriptor_model_points (ModelIDs[Index2], 'search', O, Row, \
Col)
gen_cross_contour_x1d (Cross, Row, Col, 6, 0.785398)

Step 3:  Transform the model region and its corner points

Projective transformations can be used if, e.g., the transformed region that was used for the creation of the model
should be visualized for the match as well or if the transformed corner points of the region are needed to check the
angle between edges of the region.

projective_trans_region (Rectangle, TransRegion, HomMat2D, \
'pilinear')
projective_trans_pixel (HomMat2D, RowRoi, ColRoi, RowTrans, \
ColTrans)
angle_11 (RowTrans[2], ColTrans[2], RowTrans[1], ColTrans[1], \
RowTrans[1], ColTrans([1], RowTrans[0], ColTrans[0], \
Angle)
Angle := deg(Angle)
if (Angle > 70 and Angle < 110)
dev_display (TransRegion)
dev_display (Cross)
endif

2.5.5 Visualize Matches and Perform Transformations Using a 3D Pose

When applying one of the calibrated perspective matching approaches, 3D poses are returned that describe the
relation between the model and the found model instance in world coordinates. To use such a pose, e.g., to
visualize the matching result by overlaying a structure of the reference image on the match in the search image, a
3D affine transformation is needed (for more information to 3D affine transformations see also Solution Guide
III-C - 3D Vision).

Depending on the selected matching approach, different structures from the reference image may be needed in the
search image. For the calibrated perspective, deformable matching typically the contour of the model is used to
visualize the match. That is, the contour must be transformed from the reference image to the search image. For
the calibrated descriptor-based matching, the interest points of the model can be queried directly for the search
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result, i.e., there is no need for a transformation of the model representation. However, a transformation may be
needed if the region that was used to create the model should be transformed as well.

An example for a 3D affine transformation in the context of a calibrated perspective deformable matching is given
in the HDevelop example program %HALCONEXAMPLESY,\hdevelop\Applications\Position-Recognition-
3D\locate_car_door.hdev (see figure 2.26). There, a part of a car door is searched in an image using
find_planar_calib_deformable_model, which returns the 3D pose Pose.

Figure 2.26: The contours of the model are projected into the search image.

find_planar_calib_deformable_model (ImageReducedSearch, ModelID, -0.1, \
0.2, 0.6, 1.0, 0.6, 1.0, 0.7, 1, 1, \
0, 0.7, [1, [1, Pose, CovPose, \
Score)

For the visualization of the match, the model contour should be overlaid on the match in the search image. This
transformation is realized in three steps.

Step 1:  Preprocessing for visualization purposes

First, the operator set_deformable_model_param is used to set the coordinate system in which the contours are
returned to *world’. When calling the operator get_deformable_model_contours the contours are returned
in the world coordinate system (WCS). In this example, this step was realized before the actual matching.

set_deformable_model_param (ModelID, \
'get_deformable_model_contours_coord_system', \
'world")

get_deformable_model_contours (ModelContours, ModelID, 1)

Step 2:  Apply a 3D affine transformation to the points of the contour

Within the WCS, a 3D affine transformation transforms the individual points of the contour according to the 3D
pose that is returned by the matching. Before applying this transformation, the 3D pose must be converted with
pose_to_hom_mat3d into a 3D homogeneous transformation matrix HomMat3D.

for Indexl := 0 to |Score| - 1 by 1
tuple_select_range (Pose, Indexl * 7, ((Indexl + 1) * 7) - 1, \
PoseSelected)
pose_to_hom_mat3d (PoseSelected, HomMat3D)

Additionally, as 3D affine transformations cannot be applied to 2D contours, the contour, which is now available
in the x-y-plane of the WCS, must be split into points. This is realized by the operator get_contour_x1d, which
returns a tuple for the = coordinates and a tuple for the y coordinates. To obtain 3D coordinates, a tuple for the z
coordinates with the same number of elements is created, for which all values are 0.



2.5 Use the Results of Matching

B-45

gen_empty_obj (FoundContour)

for Index2 := 1 to NumberContour by 1
select_obj (ModelContours, ObjectSelected, Index2)
get_contour_x1ld (ObjectSelected, Y, X)
Z := gen_tuple_const(|X|,0.0)

The 3D points are now transformed by the 3D affine transformation using affine_trans_point_3d.

affine_trans_point_3d (HomMat3D, X, Y, Z, Xc, Yc, Zc)

Step 3:  Project the points into the search image and reconstruct the contour

Then, the transformed 3D points are projected into the search image using project_3d_point and the contour is
reconstructed with gen_contour_polygon_x1d.

project_3d_point (Xc, Yc, Zc, CamParam, R, C)
gen_contour_polygon_x1ld (ModelWorld, R, C)
concat_obj (FoundContour, ModelWorld, FoundContour)
endfor
dev_display (FoundContour)
endfor

An example for a 3D affine transformation in the context of a calibrated descriptor-based matching is given in
the HDevelop example program %HALCONEXAMPLESY\hdevelop\Applications\Object-Recognition-2D\
locate_cookie_box.hdev that is described in more detail in section 3.6.1 on page 109. There, selected image
points, in particular the corner points of the rectangular ROI, which was used to build the descriptor model, are
transformed into the WCS using image_points_to_world_plane.

2.5.6 About the Score

The scores returned by the different matching approaches have different meanings.

For the correlation-based matching, the score is determined by a normalized cross correlation between a pattern
and the image.

For the approaches that use contours, in particular for the shape-based matching and the local or perspective
deformable matching the score is a number between O and 1 that approximately shows how much of the model is
visible in the search image. That is, if half of a model is occluded, the score can not be larger than 0.5. Note that
besides the pure number of corresponding contour points further influences on the score exist, which comprise,
e.g., the orientation of the contour (see also section 3.2.6.2 on page 64).

For the component-based matching, the score has a similar meaning, but here, two types of scores have to be
distinguished. On one hand, the score for the individual components is returned. Here, again the score shows
primarily how much of the component is visible in the image. On the other hand, a score for the whole component
model is returned. This is determined via the weighted mean of the score values for the individual components.
The weighting is performed according to the number of model points within the respective component.

For the descriptor-based matching different meanings for the score value(s) are available, depending on the selected
score type (see section 3.6.3.2 on page 112).
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Chapter 3

The Individual Approaches

Now, we go deeper into the individual matching approaches, in particular, for

* the correlation-based matching (section 3.1),

* the shape-based matching (section 3.2 on page 53),

¢ the component-based matching (section 3.3 on page 76),

* the local deformable matching (section 3.4 on page 91),

* the perspective deformable matching (section 3.5 on page 100), and

¢ the descriptor-based matching (section 3.6 on page 108).

3.1 Correlation-Based Matching

Correlation-based matching is based on gray values. This approach uses a normalized cross correlation to evaluate
the correspondence between a model and a search image. It is quite fast and can compensate both additive as
well as multiplicative variations in illumination. In contrast to the shape-based matching, also objects with slightly
changing shapes, lots of texture, or objects in blurred images (contours vanish in blurred images, e.g., because of
defocus) can be found.

The following sections show

* a first example for a correlation-based matching (section 3.1.1),
* how to select an appropriate ROI to derive the template image from the reference image (section 3.1.2),
¢ how to create a suitable model (section 3.1.3), and

* how to optimize the search (section 3.1.4 on page 50).

3.1.1 A First Example

In this section we give a quick overview of the matching workflow with correlation-based matching. To follow
the example actively, start the HDevelop program %HALCONEXAMPLES’,\hdevelop\Matching\Correlation-
Based\ncc_matching_workflow.hdev.

Step 1:  Select the object in the reference image
First, inside the training image a region containing the object is created using gen_rectangle2.
read_image (Image, 'face_masks/face_mask_01')

gen_rectangle2 (ROI, 616.5, 708.5, rad(-82.4054), 50, 35)
reduce_domain (Image, ROI, ImageReduced)
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Figure 3.1: (left) reference image with the ROI that is used to create the model; (right) match of a model instance.

Step 2:  Create the model

The reduced image is used to create the NCC model with create_ncc_model. As a result, the operator returns a
handle for the newly created model (ModelID), which can then be used to specify the model, e.g., in calls to the
operators find_ncc_model or find_ncc_models.

create_ncc_model (ImageReduced, 'auto', rad(0), rad(360), 'auto', \
'use_polarity', ModelID)

Step 3:  Find the object again

Now, the search images are read in a loop and for each search image the NCC model is searched. The found
matches can conveniently be displayed using the procedure dev_display_ncc_matching_results. To visu-
alize the match, latter one is overlaid by the region of the model using an affine transformation as described in
section 2.5.2.1 on page 31 (note, this is done within the visualization procedure). Figure 3.1 shows the reference
image and one of the found model instances.

for Index := 1 to NumImages by 1
read_image (Image, 'face_masks/face_mask_' + Index$'02')
find_ncc_model (Image, ModelID, rad(0), rad(360), 0.7, 1, 0.5, 'true', \
0, Row, Column, Angle, Score)
dev_display_ncc_matching_results (ModelID, Color, Row, Column, Angle, 0)
endfor

3.1.2 Select the Model ROI

As a first step of the correlation-based matching, the region of interest that specifies the template image must be
selected as described, e.g., in section 2.1.1 on page 17. This region can have an arbitrary shape, i.e., it can also
contain holes or consist of several parts that are not connected. Thus, it is possible to create an ROI that contains
only “robust” parts of the object. In most cases, the ROI must be selected so that it contains also some pixels
outside of the object of interest, as the immediate surroundings (neighborhood) of the object are needed to obtain
the model. But if the object itself contains enough structure to be recognized independently from its outline, it can
also be selected smaller than the object. Then, the object can be found also in front of different backgrounds. Note
that you can speed up the later search using a subsampling (see section 3.1.3.1). For that, the ROI should not be
too “thin”, because otherwise it vanishes at higher pyramid levels! As a rule of thumb, you are on the safe side
if an ROI is 2VumLevels—1 pixels wide. That is, a width of 8 pixels allows to use 4 pyramid levels. After having
selected a suitable ROI, the reduced image is used as template image for the creation of the model.

3.1.3 Create a Suitable NCC Model

Having derived the template image from the reference image, the NCC model can be created with the operator
create_ncc_model. Here, we will take a closer look at how to adjust the corresponding parameters. In particular,
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you can

* use a subsampling to speed up the search by adjusting the parameter NumLevels (section 3.1.3.1),

* allow a specific range of orientation by adjusting the parameters AngleExtent, AngleStart, and An-
gleStep (section 3.1.3.2), and

* specify which pixels are compared with the model in the later search, i.e., specify the polarity of the object
by adjusting the parameter Metric (section 3.1.3.3).

For the parameters NumLevels and AngleStep, you can let HALCON suggest values automatically. This can be
done either by setting the parameters within create_ncc_model to the value ’auto’; then, if you need to know
the values, you can query them using get_ncc_model_params. Or you apply determine_ncc_model_params
before you create the model. Then, you get an estimation of the automatically determined values as suggestion
so that you can still modify them for the actual creation of the model. Note that both approaches return only
approximately the same values and the values returned by create_ncc_model are more precise.

Note that after the creation of the model, the model can still be modified. In section 3.1.3.4 the possibilities for the
inspection and modification of an already created model are shown.

3.1.3.1 Use Subsampling to Speed Up the Search (NumLevels)

To speed up the matching process, subsampling can be used (see also section 2.4.2 on page 28). There, an image
pyramid is created, consisting of the original, full-sized image and a set of downsampled images. The model is
then created and searched on the different pyramid levels. You can specify how many pyramid levels are used via
the parameter NumLevels. We recommend to let HALCON select a suitable value itself by specifying the value
>auto’. You can then query the used value via the operator get_ncc_model_params.

3.1.3.2 Allow a Range of Orientation (AngleExtent, AngleStart, AngleStep)

If the object’s rotation may vary in the search images you can specify the allowed range in the parameter An-
gleExtent and the starting angle of this range in the parameter AngleStart (unit: radians). We recommend
to limit the allowed range of rotation as much as possible in order to speed up the search process. During the
matching process, the model is searched for in different angles within the allowed range, at steps specified with
the parameter AngleStep. If you select the value >auto’, HALCON automatically chooses an optimal step size
to obtain the highest possible accuracy by determining the smallest rotation that is still discernible in the image.
In section 3.2.6.1 on page 64 tips for the selection of values for all three parameters are given for shape-based
matching. These tips are also valid for correlation-based matching.

3.1.3.3 Specify how Gray Values are Compared with the Model (Metric)

The parameter Metric lets you specify whether the polarity, i.e., the “direction” of the contrast must be observed.
If you select the value ’use_polarity’ the polarity is observed, i.e., the points in the search image must show
the same direction of the contrast as the corresponding points in the model. If, e.g., the model is a bright object
on a dark background, the object is found in the search images only if it is also brighter than the background. You
can choose to ignore the polarity globally by selecting the value ’ignore_global_polarity’. In this mode,
an object is recognized also if the direction of its contrast reverses, e.g., if your object can appear both as a dark
shape on a light background and vice versa. This flexibility, however, is obtained at the cost of a slightly lower
recognition speed and reduced robustness.

3.1.3.4 Inspect and Modify the NCC Model

To inspect the current parameter values of the model, you query them with get_ncc_model_params. This may
be necessary if during the creation of the model an automatic parameter selection was used or if the model was
created within another program, saved to file with write_ncc_model, and read from this file in the current
program with read_ncc_model. Additionally, you can query the coordinates of the origin of the model using
get_ncc_model_origin.
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After the creation of the model and before you search the object in a search image, you can further mod-
ify the model. In particular, you can apply set_ncc_model_param to change individual parameters and
set_ncc_model_origin to change the origin of the model. The latter is not recommended because the accuracy
of the matching result may decrease, which is shown in more detail for shape-based matching in section 3.2.6.6 on
page 69.

3.1.4 Optimize the Search Process

The actual matching is performed by the operators find_ncc_model or find_ncc_models. In the following, we
show how to select suitable parameters for these operators to adapt and optimize a matching task. In particular, we
show how to

* restrict the search space to a region of interest (section 3.1.4.1),

* restrict the search space by restricting the range of orientation via the parameters AngleStart and Angle-
Extent (section 3.1.4.2),

* restrict the search space to a specific amount of deviations from the model for the object, i.e., specify the
similarity of the object via the parameter MinScore (section 3.1.4.3),

« search for multiple instances of the model by adjusting the parameters NumMatches and MaxOverlap (sec-
tion 3.1.4.4),

* search for multiple models with just one operator call (section 3.1.4.5),

* specify the accuracy that is needed for the results by adjusting the parameter SubPixel (section 3.1.4.6 on
page 53), and

e restrict the number of pyramid levels (NumLevels) for the search process (section 3.1.4.7 on page 53).

3.1.4.1 Restrict the Search to a Region of Interest

The obvious way to restrict the search space and thus speed up the matching is to apply the operator
find_ncc_model not to the whole image but only to an ROI. The corresponding procedure is explained in more
detail for shape-based matching in section 3.2.7 on page 70. For correlation-based matching you simply have to
use find_ncc_model.

3.1.4.2 Restrict the Range of Orientation (AngleStart, AngleExtent)

When creating the model you already specified the allowed range of orientation (see section 3.1.3.2 on page 49).
When calling the operator find_ncc_model you can further limit the range with the parameters AngleStart and
AngleExtent. This is useful if you can restrict these ranges by other information, which can, e.g., be obtained
by suitable image processing operations. Another reason for using a larger range when creating the model may be
that you want to reuse the model for other matching tasks.

3.1.4.3 Specify the Similarity of the Object (MinScore)

The parameter MinScore specifies the minimum score a potential match must have to be returned as match. The
score is a value for the quality of a match, i.e., for the correspondence, or “similarity”, between the model and the
search image. For correlation-based matching the score is obtained using the normalized cross correlation between
the pattern and the image (for the formula, see the description of find_ncc_model in the Reference Manual). To
speed up the search, the value of MinScore should be chosen as large as possible, but of course still as small as
necessary for the success of the search.



3.1 Correlation-Based Matching

B-51

3.1.4.4 Search for Multiple Instances of the Object (NumMatches, MaxOverlap)

To find multiple instances of a model in the search image, the maximum number of returned matches is selected
via the parameter NumMatches. Additionally, the parameter MaxOverlap specifies to which degree the instances
may overlap. The functional principle of these parameters is similar to the parameters that are used for shape-based
matching (see section 3.2.6.4 on page 66). There, tips for the parameter selection are given that are valid also for
correlation-based matching. Note that if multiple instances of the object are searched and found, the parameters
Row, Column, Angle, and Score contain tuples. How to access these results is exemplarily shown for multiple
models in section 3.1.4.5.

3.1.4.5 Search for Multiple Models Simultaneously (ModelIDs)

If you are searching for instances of multiple models in a single image, you can of course call the operator
find_ncc_model multiple times. But a faster alternative is to use the operator find_ncc_models. This op-
erator expects similar parameters, with the following differences:

e With the parameter ModelIDs you can specify a fuple of model IDs instead of a single one. As when
searching for multiple instances (see section 3.1.4.4), the matching result parameters Row etc. return tuples
of values.

e The output parameter Model shows to which model each found instance belongs. Note that the parameter
does not return the model IDs themselves but the index of the model ID in the tuple ModelIDs (starting with
0).

e The search is always performed in a single image. However, you can restrict the search to a certain region
for each model individually by passing an image array.

e You can either use the same search parameters for each model by specifying single values for AngleStart
etc., or pass a tuple containing individual values for each model.

e You can also search for multiple instances of multiple models. If you search for a certain number of objects
independent of their type (model ID), specify this (single) value in the parameter NumMatches. By passing
a tuple of values, you can specify for each model individually how many instances are to be found. The
tuple [3,0], e.g., specifies to return the best three instances of the first model and all instances of the second
model. See also the example used below.

Similarly, if you specify a single value for MaxOverlap, the operators check whether a found instance is
overlapped by any of the other instances independent of their type. By specifying a tuple of values, each
instance is only checked against all other instances of the same type.

We illustrate this using an example in which we search for two different text parts punched on a fabric. They are
illustrated in figure figure 3.2.

Figure 3.2: Different model regions to be found using ncc matching.

Step 1:  Create the models

The models are created the usual way.
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create_ncc_model (ImageReducedCE, 'auto', rad(0), rad(360), 'auto', \
'use_polarity', ModelIDCE)

create_ncc_model (ImageReducedBrand, 'auto', rad(0), rad(360), 'auto', \
'use_polarity', ModelIDBrand)

ModelIDs := [ModelIDCE, ModelIDBrand]

When searching for multiple models simultaneously, it may be useful to store the information about the models,
i.e., the XLD models, in tuples.

Step 2:  Access the model XLLD

The XLD contours corresponding to the two models are accessed with the operator get_ncc_model_region.

get_ncc_model_region (ModelRegionCE, ModelIDCE)

gen_contour_region_x1ld (ModelRegionCE, ModelContoursCE, 'border_holes')

get_ncc_model_region (ModelRegionBrand, ModelIDBrand)

gen_contour_region_xld (ModelRegionBrand, ModelContoursBrand, \
'border_holes')

Step 3:  Save the information about the models in tuples

To facilitate the access to the shape models later, the XLLD contours are saved in tuples in analogy to the model
IDs. However, when concatenating XLD contours with the operator concat_obj, one must keep in mind that
XLD objects are already tuples as they may consist of multiple contours! To access the contours belonging to a
certain model, you therefore need the number of contours of a model and the starting index in the concatenated
tuple. The former is determined using the operator count_obj. The contours of the ring start with the index 1, the
contours of the nut with the index 1 plus the number of contours of the ring.

count_obj (ModelContoursCE, NumContoursCE)

count_obj (ModelContoursBrand, NumContoursBrand)

concat_obj (ModelContoursCE, ModelContoursBrand, ShapeModels)
StartContoursInTuple := [1,NumContoursCE + 1]
NumContoursInTuple := [NumContoursCE, NumContoursBrand]

Step 4:  Search the model instances

In every image there is only a single face mask and hence for each model only a single instance is to be detected.
As a consequence we set NumMatches to [1,1], as explained above.

find_ncc_models (Image, ModelIDs, rad(0), rad(360), [0.5, 0.43], [1,1], \
0.5, 'true', 0, Row, Column, Angle, Score, Model)

Step 5:  Access the found instances

As described in section 3.1.4.4 on page 51, in case of multiple matches the output parameters Row etc. contain
tuples of values, which are typically accessed in a loop, using the loop variable as tuple index. When searching
for multiple models, a second index is involved: The output parameter Model indicates to which model a match
belongs. This is done by storing the index of the corresponding model ID within the tuple of IDs specified in the
parameter ModelIDs. This may sound confusing, but can be realized in an elegant way in the code: For each
found instance, the model ID index is used to select the corresponding information from the tuples created above.
As already noted, the XLD representing the model can consist of multiple contours. Therefore, you cannot access
them directly using the operator select_obj. Instead, the contours belonging to the model are selected via the
operator copy_obj, specifying the start index of the model in the concatenated tuple and the number of contours
as parameters. Note that copy_obj does not copy the contours, but only the corresponding HALCON objects,
which can be thought of as references to the contours.
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NumMatches := |Score]|
for Match := 0 to NumMatches - 1 by 1
ModelIndex := Model[Matchl]
hom_mat2d_identity (HomMat2DIdentity)
hom_mat2d_rotate (HomMat2DIdentity, Angle[Match], 0, 0, \
HomMat2DRotate)
hom_mat2d_translate (HomMat2DRotate, Row[Match], Column[Match], \

MoveAndScalingOfObject)
*

copy_obj (ShapeModels, ShapeModel, StartContoursInTuple[ModelIndex], \
\
NumContoursInTuple [ModelIndex])

affine_trans_contour_xld (ShapeModel, ModelAtNewPosition, \

MoveAndScaling0OfObject)
dev_display (ModelAtNewPosition)
affine_trans_pixel (MoveAndScaling0OfObject, O, O, RowTramns, \
ColTrans)
gen_cross_contour_x1ld (Cross, RowTrans, ColTrans, 6, Angle[Match])
dev_display (Cross)
endfor

Note that you can alternatively also visualize the ncc matches conveniently using the visualization procedure.

dev_display_ncc_matching_results ([ModelIDCE, ModelIDBrand], \
VisualizationColor, Row, Column, \
Angle, ModelIndex)

3.1.4.6 Specify the Needed Accuracy (SubPixel)

The parameter SubPixel specifies if the position and orientation of a found model instance is returned with pixel
accuracy (SubPixel set to ’false’) or with subpixel accuracy (SubPixel set to ’true’). As the subpixel
accuracy is almost as fast as the pixel accuracy, we recommend to set SubPixel to ’true’.

3.1.4.7 Restrict the Number of Pyramid Levels (NumLevels)

The parameter NumLevels, which you already specified when creating the model, allows you to use a different (in
most cases a more restrictive) value in the search process. By using the value 0 for NumLevels, the value specified
when creating the model is used.

Optionally, NumLevels can contain a second value, so that you can specify not only the highest but also the lowest
pyramid level used for the search. If the search is finished on a pyramid level that is higher than the first pyramid
level, which corresponds to the original, full-sized image, the search becomes faster. On the other hand, the search
is then also less robust and less accurate.

3.1.4.8 Set the NCC Model Parameter ’timeout’ via set_ncc_model_param

If your application demands that the search must be carried out within a specific time, you can set the parameter
>timeout’ with the operator set_ncc_model_param to specify the maximum period of time after which the
search is guaranteed to terminate, i.e., you can make the search interruptible. But note that for an interrupted
search no result is returned. Additionally, when setting the timeout mechanism, the runtime of the search may be
increased by up to 10%.

3.2 Shape-Based Matching

The shape-based matching does not use the gray values of pixels and their neighborhood as template but describes
the model by the shapes of contours. The model can also be extended by further constraints regarding neighboring
edges. The following sections
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* introduce the general concept of a shape-based matching application (section 3.2.1),
 show a first example for a shape-based matching (section 3.2.2),

¢ explain how to select an appropriate ROI to derive the template image from the reference image (sec-
tion 3.2.3),

 explain how to create a suitable model (section 3.2.4),

¢ explain how to train the model (section 3.2.5)

* explain how to optimize the search of object instances (section 3.2.6),

* explain how to restrict the search to a specific region of interest (section 3.2.7),
¢ explain how to search for multiple models simultaneously (section 3.2.8),

* give ideas how to optimize the matching speed (section 3.2.9),

 explain how to use multiple shape-based matching results, (section 3.2.10), and

 explain how to adapt to a changed camera orientation (section 3.2.11).

3.2.1 General Concept

Shape-based matching using the generic interface consists of these main steps:

Select the object in the
reference image

Create a suitable shape
model

Train the model

Find object instances

Step 1:  Select the object in the reference image (section 3.2.3 on page 56)

After grabbing the reference image the first task is to create a region containing the object. This object will serve
as training template in Step 3: Train the model.

Step 2:  Create a suitable shape model (section 3.2.4 on page 58)

The model is created using the operator create_generic_shape_model. As a result, the operator returns a
handle for the newly created model (ModelID).

Parameters modifying the model ModelID itself have to be set in this step using
set_generic_shape_model_param. Changing a corresponding value later makes it necessary to retrain
the adjusted model before the matching. This is also indicated by the parameter needs_training’, which you
can retrieve using get_generic_shape_model_param.

Note that if you use HALCON’s .NET, or C++ interface and call the operator via the class HShapeModel, no
handle is returned because the instance of the class itself acts as your handle.

Step 3:  Train the model (section 3.2.5 on page 63)

Train the created model using train_generic_shape_model in order to find the training pattern given in Tem-
plate.
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Step 4:  Find object instances (section 3.2.6 on page 63)

Find the model object instances using find_generic_shape_model. Parameters optimizing the search of a
model instance can be set using set_generic_shape_model_param as their modification does not necessitate a
model training. Note, that this is not the case if they are set from a non-estimated value to a value leading to an
automatic estimation during train_generic_shape_model.

3.2.2 A First Example

In this section we give a first example showing the general steps of a matching process mentioned in section 3.2.1
on page 54. To follow the example actively, start the HDevelop program %HALCONEXAMPLESY\solution_guide\
matching\first_example_shape_matching.hdev, which locates the print on an IC.

Step 1:  Select the object in the reference image

After grabbing the reference image the first task is to create a region containing the object. In the example program,
a rectangular region is created using the operator gen_rectanglel. Alternatively, you can draw the region inter-
actively using, e.g., draw_rectanglel or use a region that results from a previous segmentation process. Then, an
image containing just the selected region, i.e., the template image, is created using the operator reduce_domain.
The result is shown in figure 3.3.

gen_rectanglel (ROI, 450, 470, 580, 755)
reduce_domain (Image, ROI, ModelImage)

Step 2:  Create a suitable shape model

With the operator create_generic_shape_model, the model is created.

create_generic_shape_model (ModelID)

For this example the we set the parameter *num_levels’ in order to illustrate a possible way how to determine
and set the model levels.

Step 3:  Train the model

The created model needs to be trained to find the wanted object. This is done calling
train_generic_shape_model with the model to be trained, ModelID, and the training pattern given in
Template.

train_generic_shape_model (ModelImage, ModelID)

Step 4:  Find object instances

To find the object in a search image, all you need to do is call the operator find_generic_shape_model. Fig-
ure 3.4 shows the result for one of the example images.

LY RILEL3D
Mm« 5905351

541E TAIOAN

Figure 3.3: (left) reference image with the ROI that specifies the object; (right) the internal model (4 pyramid levels).
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Figure 3.4: Finding the object in other images.

for i := 2 to 9 by 1
read_image (SearchImage, 'board/board_' + i$'02')
find_generic_shape_model (SearchImage, ModelID, MatchResultID, \
NumMatchResult)
if (NumMatchResult > 0)
get_generic_shape_model_result_object (Objects, MatchResultID, \
'all', 'contours')
endif
endfor

The operator find_generic_shape_model returns the number of found instances NumMatchResults and a
handle MatchResultID. Using the handle inspect you can directly inspect the found instances (see the HDe-
velop User’s Guide, section 6.22.3 on page 169 for more information to the handle inspect). But the primary
function of the handle is to store the data of the found instances. With this handle you can call the opera-
tor get_generic_shape_model_result to retrieve results like position or score of a found instance or call
get_generic_shape_model_result_object to retrieve iconic results. Such an iconic result is, e.g., the model
contour transformed according to the matching result, which can directly be displayed.

The following sections go deeper into the details of the individual steps of a shape-based matching and the param-
eters that have to be adjusted.

3.2.3 Select the Model ROI

As a first step of the shape-based matching, the region of interest that specifies the template image must be selected.
This region can have an arbitrary shape, i.e., it can also contain holes or consist of several parts that are not
connected. Thus, it is possible to create an ROI that contains only “robust” parts of the object. The ROI must
be selected so that it contains all prominent structures of the object and also some pixels outside of them, as
their immediate surroundings (neighborhood) are needed to derive the model. Furthermore, you can speed up the
later search using a subsampling (see section 3.2.4.2 on page 59). For that, the ROI should not be too “thin”,
because otherwise it vanishes at higher pyramid levels! As a rule of thumb, you are on the safe side if an ROI is
gNumlLevels—1 nixels wide. That is, a width of 8 pixels allows to use 4 pyramid levels. After having selected a
suitable ROI, the reduced image is used as template image for the creation of the model.

When using shape-based matching in the presence of clutter in the reference image, you can also use
the operator inspect_shape_model to improve an interactively selected ROI by additional image process-
ing. This is shown in the HDevelop example program %HALCONEXAMPLES,\solution_guide\matching\
process_shape_model.hdev, which locates the arrows that are shown in Figure 3.5.

Step 1:  Select the arrow

There, an initial ROI is created around the arrow, without trying to exclude clutter (see figure 3.5a).

gen_rectanglel (ROI, 361, 131, 406, 171)
reduce_domain (ModelImage, ROI, ImageROI)
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Figure 3.5: Processing the result of inspect_shape_model: a) interactive ROI; b) models for different values of
Contrast; c) processed model region and corresponding ROl and model; d) result of the search.

Step 2:  Create a first model region

Then, this ROI is inspected via inspect_shape_model.

inspect_shape_model (ImageROI, ShapeModelImage, ShapeModelRegion, 1, 30)

Figure 3.5b shows the shape model regions that would be created for different values of the parameter Contrast.
As you can see, you cannot remove the clutter without losing characteristic points of the arrow itself.

Step 3:  Process the model region

This problem can be solved by exploiting the fact that the operator inspect_shape_model returns the shape
model region. Thus, you can process it like any other region. The main idea to get rid of the clutter is to use
the morphological operator opening_circle, which eliminates small regions. Before this, the operator £i11_up
must be called to fill the inner part of the arrow, because only the boundary points are part of the (original) model
region.

£ill_up (ShapeModelRegion, FilledModelRegion)
opening_circle (FilledModelRegion, ROI, 3.5)

Step 4:  Create the final model

The obtained region is then used to create the model for a matching that locates all arrows successfully. Figure 3.5¢
shows the processed region, the corresponding region of interest, and the final model region.

reduce_domain (ModelImage, ROI, ImageROI)
create_generic_shape_model (ModelID)
train_generic_shape_model (ImageROI, ModelID)
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3.2.4 Create a Suitable Shape Model
Having derived the template image from the reference image, the shape model can be trained. Before the training,
an empty shape model needs to be created using and possibly configured. As mentioned in section 3.2.1 on page
54, parameters modifying the model itself need to be set before the training. In the following we will explain some
of the concepts and the parameters to adjust them:

» Specify which pixels are part of the model: ’contrast_low’, ’contrast_high’, and ’min_size’ (sec-
tion 3.2.4.1),

* Speed up the search by using a subsampling, i.e., by adjusting the parameter *num_levels’ , and by reduc-
ing the number of model points, i.e., by adjusting the parameter ’optimization’ (section 3.2.4.2),

* Allow a specific range of scale (section 3.2.4.3),

* Modify the angle sampling (section 3.2.4.4),

» Specify how pixels are compared with the model in the later search: ’metric’ (section 3.2.4.5),

Note that when adjusting the parameters you can also let HALCON assist you:

e Use automatic parameter suggestion: For many parameters you can let HALCON suggest suit-
able parameters. Then, you can either leave ’auto’ as the corresponding parameter value (de-
fault value for the parameters where HALCON can automatically determine value suggestions, see
set_generic_shape_model_param), or you apply determine_shape_model_params to automatically
determine parameters for a shape model from a template image and then decide individually if you set the
suggested values for the shape model. Note that both approaches return only approximately the same val-
ues and train_generic_shape_model and find_generic_shape_model, respectively, return the more
precise values.

e Inspect the model: HALCON offers different options to inspect the model and check automatically set
parameters, see section 3.2.5.1.

3.24.1 Specify Pixels that are Part of the Model: ’contrast_low’, ’contrast_high’, and
’min_size’
The shape of the object needs to be extracted without possible clutter. This is done by:

* Selecting all those points whose neighboring contrast exceeds a certain threshold.

* Rejecting components smaller than the minimum number of points.

Alternative methods to remove clutter are to modify the ROI as described in section 3.2.3 on page 56 or create a
synthetic model.
Figure 3.6 shows an example. The task is to create a model for the outline of the pad. If the complete outline is
selected, the model also contains clutter (figure 3.6a). If the clutter is removed, parts of the outline are missing
(figure 3.6b).

& You can let HALCON select suitable values itself by specifying the value >auto’ for the respective parameters.

But it is recommended to verify them using inspect_shape_model before training the model.
In the following we will have a look at these parameters.

Setting the required model contrast-parameters: For the model those pixels are selected, whose contrast, i.e.,
gray value difference to neighboring pixels, exceeds a threshold. In order to obtain a suitable model the
contrast should be chosen in such a way that the significant pixels of the object are included, i.e., those
pixels that characterize it and allow to discriminate it clearly from other objects or from the background.
Obviously, the model should not contain clutter, i.e., structures that do not belong to the object.

The threshold can be specified as a single value or as a hysteresis threshold, depending on the values for
>contrast_low’ and ’contrast_high’, which can be set using set_generic_shape_model_param.
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Figure 3.6: Selecting significant pixels by adapting the contrast using set_generic_shape_model_param:
a) complete object containing clutter: ’contrast_low’ = ’contrast_high’ = 40;
b) little clutter but incomplete object: ’contrast_low’ = ’contrast_high’ = 70;
c) hysteresis threshold: ’contrast_low’ =40, ’contrast_high’ = 70;
d) minimum contour size: ’contrast_low’ = ’contrast_high’ = 40 and ’min_size’ = 30.

A hysteresis threshold is useful in cases where it is impossible to find a single threshold value that removes
all the clutter but not also parts of the object. It uses two thresholds, a lower and an upper threshold (see
also the operator hysteresis_threshold). For the model, first pixels that have a contrast higher than
the upper threshold are selected. Then, pixels that have a contrast higher than the lower threshold and that
are connected to a high-contrast pixel, either directly or via another pixel with contrast above the lower
threshold, are added. This method enables you to select contour parts whose contrast is locally low.
Returning to the example with the pad: As you can see in figure 3.6¢c, with a hysteresis threshold you can
create a model for the complete outline of the pad without clutter.

The following line of code shows how to inspect the two thresholds (note, operator inspect_shape_model
uses a different syntax):

inspect_shape_model (ImageReduced, ModelImages, ModelRegions, 2, [40,70])

Note also, the parameter ’contrast_low’ and ’contrast_high’ are for the model. The minimal contrast
a point must at least have in a search image in order to be compared with the model is determined by
’min_contrast’.

Setting a minimum model size using 'min_size’: An other possibility to remove clutter is to specify a mini-
mum size, i.e., number of pixels, for the contour components. Figure 3.6d shows the result for the example
task. The minimum size is set through min_size’ using set_generic_shape_model_param.

The following line of code shows how to inspect the minimum
size (note, operator inspect_shape_model uses a different syntax):

inspect_shape_model (ImageReduced, ModelImages, ModelRegions, 2, [40,40,30])

3.2.4.2 Speed Up the Search using Subsampling and Point Reduction: ’num_levels’ and ’op-
timization’

The search can be sped up by reducing the number of points to examine. This can be achieved by either

* reducing the number of image points via subsampling,
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¢ reducing the number of model points via model optimization.

In the following, we will have a look at these possibilities.

Subsampling: Subsampling can be used to speed up the search (see also section 2.3 on page 25 and section 2.4.2

on page 28). There, an image pyramid is created, consisting of the original, full-sized image and a set of
downsampled images. The model is then trained to search on the different pyramid levels.

You can specify how many pyramid levels are used via the parameter ’num_levels’ using
set_generic_shape_model. We recommend to choose the highest pyramid level at which the model
contains at least 10-15 pixels and in which the shape of the model still resembles the shape of the object.

A much easier method is to let HALCON select a suitable value itself by specifying the value ’auto’ for
’num_levels’ . You can then query the used value via the operator get_generic_shape_model_param.

Note that if you want to set the number of pyramid levels manually, you can inspect the template image
pyramid using the operator inspect_shape_model, e.g., as shown in the HDevelop program ,HALCONEX-
AMPLESY\solution_guide\matching\first_example_shape_matching.hdev. After the call to in-
spect_shape_model, the model regions on the selected pyramid levels are displayed in HDevelop’s Graph-
ics Window. You can have a closer look at them using the online zooming (menu entry Visualization
> Zoom Window). The code lines following the operator call loop through the pyramid and determine the
highest level on which the model contains at least 15 points. This value is then used in the call to the operator
train_generic_shape_model.

inspect_shape_model (ModelImage, ShapeModelImages, ShapeModelRegions, 8, 30)
area_center (ShapeModelRegions, AreaModelRegions, RowModelRegions, \
ColumnModelRegions)

* Possible way to determine the model levels.
count_obj (ShapeModelRegions, HeightPyramid)
for i := 1 to HeightPyramid by 1

if (AreaModelRegions[i - 1] >= 15)

NumLevels := i

endif
endfor
create_generic_shape_model (ModelID)
set_generic_shape_model_param (ModelID, 'num_levels', NumLevels)
train_generic_shape_model (ModelImage, ModelID)

Note that the operator inspect_shape_model returns the pyramid images in form of an image tuple (array).
The individual images can be accessed like the model regions with the operator select_obj. Please note
that object tuples start with the index 1, whereas control parameter tuples start with the index 0!

Model optimization: A further reduction of model points can be enforced via the parameter ’optimization’

using set_generic_shape_model. This may be useful to speed up the matching in the case of particularly
large models. Again, we recommend to specify the value >auto’ to let HALCON select a suitable value
itself. Please note that regardless of your selection all points passing the contrast criterion are displayed, i.e.,
you cannot check which points are part of the model.

3.2.4.3 Allow a Range of Scale
You can specify an allowed range of scale. To do so, two forms are on hand:

Isotropic scaling: Identical scaling in row and column direction (uniform scaling). To do so, you specify the

smallest and largest allowed scaling value as well as the step length between two sampled points in order to
determine the granularity of the scaling. See also set_generic_shape_model_param.

Anisotropic scaling: Different scaling in row and column direction. To do so, you also specify the smallest and

largest allowed scaling value as well as the step length between two sampled points in order to determine the
granularity of the scaling. But in case of anisotropic scaling you specify these values for the row and column
direction independently. See also set_generic_shape_model_param.



3.2 Shape-Based Matching

B-61

Note that you can further limit the allowed range during the search. Thus, if you want to reuse a model for different
tasks requiring a different range of scale, you can use a large range when creating the model and a smaller range
for the search.

Note that if you are searching for the object on a large range of scales you should create the model based on a
large scale because HALCON cannot “guess” model points when precomputing model instances at scales larger
than the original one. On the other hand, the image pyramid should be created such that the highest level contains
enough model points also for the smallest scale. See section 2.3 on page 25 and section 3.2.4.2 on page 59 for
further information about the image pyramid and its setting.

If you select the value auto’ for the step parameters ’iso_scale_step’ and its anisotropic equivalents, HAL-
CON automatically chooses a suitable step size to obtain the highest possible accuracy by determining the smallest
scale change that is still discernible in the image. A scaled object is clearly discernible from the original if the
point that lies farthest from the center of the object is moved by at least 2 pixels. Therefore, the corresponding
scale change As,, is calculated as follows:

d
As=- = Asopt =~
l l
with [ being the maximum distance between the center and the object boundary and d = 2 pixels. For some
models, the such estimated scale step size is still too large. In these cases, it is divided by 2 automatically.

The automatically determined scale step size is suitable for most applications. Therefore, we recommend to
select the value ’auto’. By selecting a higher value you can speed up the search process, however, at the cost of
a decreased accuracy of the estimated scale. Note that for very high values the matching may fail altogether!

The value chosen for the step parameters should not deviate too much from the optimal value (%Asopt < As <
3Aspt). Note that choosing a very small step size does not result in an increased scale accuracy!

3.2.4.4 Modify the Angle Sampling: ’angle_step’

During the matching process, the model is searched for in different angles within the allowed range, at steps
specified with the parameter >angle_step’ . Thus, for orientation angles

’angle_start’ +n X ’angle_step’

with n being an integer. In this section we will have a look at possible values for ’angle_step’.

If you select the value *auto’, HALCON automatically chooses an optimal step size ¢,,; to obtain the highest
possible accuracy by determining the smallest rotation that is still discernible in the image. The underlying al-
gorithm is explained in figure 3.7: The rotated version of the cross-shaped object is clearly discernible from the
original if the point that lies farthest from the center of the object is moved by at least 2 pixels. Therefore, the
corresponding angle ¢, is calculated as follows:

d? 2
d=1P+1?-21-1-cos¢ = Popt = arccos (1_212) = arccos <1_l2>

with [ being the maximum distance between the center and the object boundary and d = 2 pixels. For some
models, the angle step size estimated this way is too large. In these cases, it is divided by 2 automatically.

Figure 3.7: Determining the minimum angle step size from the extent of the model.

The automatically determined angle step size ¢, is suitable for most applications. Therefore, we re-
commend to select the value ’auto’. You can query the used value after the creation via the operator
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AngleStep = 20 AngleStep = 30

Figure 3.8: The effect of a large *angle_step’ on the matching.

get_generic_shape_model_param. By selecting a higher value you can speed up the search process, how-
ever, at the cost of a decreased accuracy of the estimated orientation. Note that for very high values the matching
may fail altogether!

The value chosen for >angle_step’ should not deviate too much from the optimal value (%gbopt < @ < 3dopt).
Note that choosing a very small step size does not result in an increased angle accuracy!

What happens in case of not suitable step size?

If the value for the parameter ’angle_step’ is significantly larger than the automatically selected minimum
value, the effect depicted in figure 3.8 can occur: If the object lies between two precomputed angles, points lying
far from the center are not matched to a model point, and therefore the score decreases.

Of course, the same line of reasoning applies to the parameter *scale_step’ and its variants for anisotropic
scaling (see section 3.2.4.3 on page 60).

3.2.4.5 Specify how Pixels are Compared with the Model: ’metric’

Polarity, i.e., the direction of the contrast, can vary between different images. You can specify whether and how
the polarity must be observed (see figure 3.9) using the parameter metric’.

Template Image Search Images
model found with: model found with: model found with:
‘'use_polarity’
'ignore_global_polarity’ ‘ignore_global_polarity’
'ignore_local_polarity’  ’ignore_local_polarity’  ’ignore_local_polarity’

Figure 3.9: The parameter *metric’ specifies how to consider the polarity of the model.

Different ways to handle the polarity and thus different values for *metric’:

’use_polarity’: The polarity is observed, i.e., the points in the search image must show the same direction
of the contrast as the corresponding points in the model. If, e.g., the model is a bright object on a dark
background, the object is found in the search images only if it is also brighter than the background.

’ignore_global_polarity’: The polarity is globally ignored. In this mode, an object is recognized also if the
direction of its contrast reverses, e.g., if your object can appear both as a dark shape on a light background
and vice versa. This flexibility, however, is obtained at the cost of a slightly lower recognition speed.
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’ignore_local_polarity’: The object is found even if the contrast changes locally. This mode can be useful,
e.g., if the object consists of a part with a medium gray value, within which either darker or brighter sub-
objects lie. Please note however, that the recognition speed and the robustness may decrease dramatically in
this mode, especially if you allowed a large range of rotation (see section 3.2.6.1 on page 64).

’ignore_color_polarity’: You can perform the matching in color images (or, more generally, in
multi-channel images). An example is %HALCONEXAMPLES)\hdevelop\Applications\Position-
Recognition-2D\matching_multi_channel_yogurt.hdev.

If you will train your model with XLD contours, there is no information about the polarity of the model available.
Thus, for such a model the value of ’metric’ must be set to ignore_local_polarity’. You can change this
setting after a first successful matching. With get_generic_shape_model_result you can retrieve the transfor-
mation matrix to project the contour onto the search image. Then, with the operator set_shape_model_metric
you can determine the polarity of the first search image, which is used as training image for the polarity, and set
the match metric to >use_polarity’ or ’ignore_global_polarity’. Using the value *use_polarity’,i.e.,
if the following search images have the same polarity as the training image, the search becomes faster and more
robust.

An example is %,HALCONEXAMPLES,\hdevelop\Matching\Shape-Based\create_shape_model_x1d.hdev.
Note that set_shape_model_metric is only available for models that are created from XLD contours!

3.2.5 Train the Shape Model

Once the model is created and all parameters modifying the model are set, it is time to train the model to find the
object. This is done using train_generic_shape_model, where the shape is presented via the Template. The
model parameter needs_training’ is changed to *false’ (see get_generic_shape_model_param).

Note that if you derive your model from an XLD contour, after a first match, it is strongly recommended to
determine the polarity information for the model with set_shape_model_metric (see section 3.2.4.5 on page 62
and section 2.1.3.2 on page 22 for details).

3.2.5.1 Inspect the Shape Model

You can apply the operator inspect_shape_model to the template image to try different values for the parameters
’num_levels’ and contrast parameters. The operator returns the resulting representation of a shape model with
multiple pyramid levels and thus allows you to visually check if the object of interest is represented adequately
by the model. If several combinations of parameter values do not lead to a satisfying representation of the object,
maybe the template image, i.e., the model’s ROI was not selected properly. How to select a suitable ROI is
described in section 2.1 on page 17.

If you want to visually inspect an already created shape model, you can use get_generic_shape_model_object
to get the XLD contours that represent the model in a specific pyramid level. Note that the contours are stored
within the model handle and you can inspect them also using the handle inspect (see the HDevelop User’s Guide,
section 6.22.3 on page 169 for more information to the handle inspect).

To inspect the current parameter values of a model, you query them with get_generic_shape_model_param
or inspect them using the handle inspect. This may be necessary if during the creation of the model an au-
tomatic parameter selection was used or if the model was created within another program, saved to file with
write_shape_model, and read from this file in the current program with read_shape_model. Additionally, you
can query the coordinates of the origin of the model using get_shape_model_origin.

You still can change model parameters using set_generic_shape_model_param, even for a trained model, but
’needs_training’ will be changed to ’true’ and necessitates to retrain the model .

3.2.6 Find Object Instances

This section addresses the search of model instances. Shape-based matching uses the opera-
tor find_generic_shape_model to find object instances and the results can be retrieved using
get_generic_shape_model_result and get_generic_shape_model_result_object for iconic results.

We discuss different concepts with the corresponding search parameters to optimize your specific search problem,
namely:



B-64

The Individual Approaches

Modify allowed instances

¢ Restrict the Model Orientation (section 3.2.6.1),

Sort out found matches

 Specify the Visibility of the Object: min_score’ (section 3.2.6.2),

* Search for Multiple Instances of the Object: *num_matches’ (section 3.2.6.3),

* Sort out Matches According to their Overlap: max_overlap’ (section 3.2.6.4 on page 66),
* Restrict the Search by Specifying Clutter (section 3.2.6.5).

Specify the Needed Accuracy

 Specify the Needed Accuracy: ’subpixel’, max_deformation’ (section 3.2.6.6 on page 69)

As prerequisite you need a trained model with suitable settings of parameters modifying the model itself (for the
model inspection see section 3.2.5.1 on page 63).

3.2.6.1 Restrict the Model Orientation

Shape models created with create_generic_shape_model have a rotation range from O to 6.28 (= 2) (unit:
radians). Thereby the range of rotation is defined relative to the reference image, i.e., a starting angle of 0 corre-
sponds to the orientation the object has in the reference image.

This range of orientation can be restricted, meaning find_generic_shape_model searches model instances of
different angles within the range defined by ’angle_start’ and ’angle_end’. In case the range is not a multiple
of the step size the start and end value are automatically adapted (see also section 3.2.4.4 on page 61 and the part
Automatic modifications in set_generic_shape_model_param). In certain cases it is advantageous to
restrict the model orientation:

e If you are only interested in matches within a certain orientation.

e If the object is (almost) symmetric you should limit the allowed range during the search by
find_generic_shape_model. Otherwise, the search process will find multiple, almost equally good
matches on the same object at different angles. Which match (at which angle) is returned as the best can
therefore change seemingly random from image to image. The suitable range of rotation depends on the
symmetry: For a cross-shaped or square object the allowed extent must be less than 90°, for a rectangular
object less than 180°, and for a circular object 0° (see figure 3.10). To limit the range you can set ’an-
gle_start’ or ’angle_end’ using set_generic_shape_model_param.

180° 120° 90° 180° 0° 90°

Figure 3.10: Suitable angle ranges for rotation symmetric objects.

3.2.6.2 Specify the Visibility of the Object: ’min_score’

With the parameter min_score’ you can specify how much of the model must be visible. A typical use of this
mechanism is to allow a certain degree of occlusion as demonstrated in figure 3.11: The security ring is found if
’min_score’ issetto0.7.

Let’s take a closer look at the term “visibility”: When comparing a part of a search image with the model, the
matching process calculates the so-called score, which is primarily a measure of how many model points could
be matched to points in the search image (ranging from 0 to 1). A model point may be “invisible” and thus not
matched because of multiple reasons:
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Figure 3.11: Searching for partly occluded objects: a) model of the security ring; b) search result for *°MinScore’ =
0.8; ¢) search result for ’MinScore’ =0.7.

e Parts of the object’s contour are occluded, e.g., as depicted in figure 3.11.

Please note that by default it depends on your system settings whether objects which are clipped at
the image border are found. This behavior can be changed with set_generic_shape_model_param
(ModelID, ’border_shape_models’,’true’). An example is HALCONEXAMPLES,\hdevelop\
Applications\Position-Recognition-2D\matching_image_border.hdev.

e Parts of the contour have a contrast lower than specified in the parameter min_contrast’ .
e The polarity of the contrast changes globally or locally (see section 3.2.4.5 on page 62).

o If the object is deformed, which includes also the case that the camera observes the scene under an oblique
angle, parts of the contour may be visible but appear at an incorrect position and therefore do not fit the
model anymore. In such cases the following options may help:

* Deformed objects might be found if you set the parameter *max_deformation’ (see section 3.2.6.6
on page 69).

* Deformed or defocused objects might be found if the increased tolerance mode is activated, see ’ pyra-
mid_level_robust_tracking’ in set_generic_shape_model_param.

» Perspective deformations that occur because of an oblique camera view can be handled as described in
section 3.2.11 on page 75.

Besides these obvious reasons, which have their root in the search image, there are some not so obvious reasons
caused by the matching process itself:

e HALCON precomputes the model for intermediate angles within the allowed range of orientation. During
the search, a candidate match is then compared to all precomputed model instances. A not-suitable value for
the parameter ’angle_step’ may lead to a significant score drop, see section 3.2.4.4 on page 61. Note, the
same line of reasoning occurs also for model scaling.

e Another stumbling block lies in the use of an image pyramid which was introduced in section 2.3 on page
25: When comparing a candidate match with the model, the specified minimum score must be reached on
each pyramid level. However, on different levels the score may vary, with only the score on the lowest level
being returned in the parameter ’score’ . This sometimes leads to the apparently paradox situation that
’min_score’ must be set significantly lower than the resulting ’score’ . Note that if the matches are not
tracked to the lowest pyramid level it might happen that instances with a score slightly below ’min_score’
are found.

Recommendation: The higher *min_score’ , the faster the search!

3.2.6.3 Search for Multiple Instances of the Object: ’num_matches’

The maximal number of returned instances can be determined using *num_matches’. Its exact behavior depends
on whether clutter is set, see also set_generic_shape_model. Note, in case of no clutter set, promising matches
are limited on every pyramid level to the number ’num_matches’. This may result in rejecting instances on a
certain pyramid level even though they would achieved a higher score on a lower pyramid level. As a consequence
it is possible that you obtain a different instance (with a lower score) by setting ’num_matches’ to 1 than the
instance found with highest score by setting num_matches’ to a higher number or even ’all’.
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Figure 3.12: A closer look at overlapping matches: a) model of the security ring; b) model overlap; c) smallest
rectangle surrounding the model; d) rectangle overlap; e) pathological case.

3.2.6.4 Sort out Matches According to their Overlap: ’max_overlap’

The parameter, *max_overlap’ , lets you specify how much two matches may overlap (as a fraction). In fig-
ure 3.12b, e.g., the two security rings overlap by a factor of approximately 0.2. In order to speed up the matching
as much as possible, however, the overlap is calculated neither for the models themselves nor for the models ROI
but for their smallest surrounding rectangle. This must be kept in mind when specifying the maximum overlap. In
most cases, therefore a larger value is needed (e.g., compare figure 3.12b and figure 3.12d).

Figure 3.12e shows a “pathological” case: Even though the rings themselves do not overlap, their surrounding
rectangles do to a large degree. Unfortunately, this effect cannot be prevented.

3.2.6.5 Restrict the Search by Specifying Clutter

In some cases, although multiple matches with high >score’ values are found within a search image, not all
of them are wanted as results. For example, in Figure 3.13, although only the structures consisting of eight dots
are searched for, more instances are found. In order to get only the wanted matches, the instances have to be
distinguished. This can be done considering the absence of edges in the neighborhood of the object as a distinctive
feature.

To restrict the search to candidates that have no (or too faint) edges within a region specified relative to the model
contours, you can use set_generic_shape_model_object to set a clutter region via ’clutter_region’.

The HDevelop example %HALCONEXAMPLESY,\solution_guide\matching\pick_and_place_2d.hdev uses
clutter to identify the objects with enough free space so a robot can pick them, see Figure 3.14

Set the clutter region

Setting the clutter region differs depending whether the shape model is created from an image region or from an
XLD.

In the first case our model is created from an image region: On an image a suitable object instance is used to define
the model and the clutter region.
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Figure 3.13: Extending a shape model by a clutter region to retrieve only the wanted results: a) select shape model
(orange) from image; b) extracted shape model; ¢) matching results (green) without the use of clutter
parameters (note, for visualization purpose not all rotated matches are shown); d) additionally define
clutter region (blue); e) shape model (orange), extended by a clutter region (blue); f) matching result
(green) with the use of clutter parameters.
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Figure 3.14: Clutter is used to find all screws (green) with enough empty space at a defined place around (blue) so
the robot can pick them.
Left: Regions to define the model (orange) and the clutter region (blue).
Right: Search image with found instances (green) and their corresponding clutter regions (blue).

gen_rectanglel (ROI, 1685, 2710, 2215, 3120)
reduce_domain (Image, ROI, ImageReduced)
gen_rectangle2 (ROI_O, 1761, 2781, rad(-110), 55, 40)
gen_rectangle2 (ROI_1, 1856, 3083, rad(75), 55, 40)
union2 (ROI_O, ROI_1, ClutterRegion)

The clutter region is added to the model. In the following code snippet this is done before the training, but it can
also be set afterwards.

create_generic_shape_model (ModelID)
set_generic_shape_model_object (ClutterRegion, ModelID, 'clutter_region')
train_generic_shape_model (ImageReduced, ModelID)
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In case of a shape-based model created from an XLD, the workflow differs. This is because models created from
an XLD have their origin in the image origin (see Figure 3.15). Thus, when creating a model, HALCON can not
know, where the clutter region is relative to the corresponding model instance. Therefore, the position of the model
instance has to be given.

The position of the model instance is just the transformation of the model from the image origin. And as the image
origin and the model origin coincide, we can use the model transformation for the model instance. So we generate
a model (without clutter) and train it.

Figure 3.15: Extending an XLD shape model by a clutter region. The original XLD shape model (orange) has
its origin on the top left image corner (0,0). To define the clutter region (blue) relative to the model
instance (green), the transformation from the shape model to the model instance needs to be given..

create_generic_shape_model (ModelXLDID)
train_generic_shape_model (ModelXLD, ModelXLDID)

We open the image we want to use to define the clutter region. In this image we search for a model instance which
we could use to define the clutter region. In the following code snippet it is Match 1.

read_image (Image, 'screws/screws_backlight/screws_backlight_03")
find_generic_shape_model (Image, ModelXLDID, MatchResultDefID, \

NumMatchResult)
Match := 1
get_generic_shape_model_result_object (Objects, MatchResultDefID, Match, \
'contours')
get_generic_shape_model_result (MatchResultDefID, Match, 'hom_mat_2d', \
HomMat2D)

For the found model instance we define the respective clutter region.

gen_rectangle2 (Rectanglel, 237, 2546, rad(-16), 55, 25)
gen_rectangle2 (Rectangle2, 557, 2435, rad(-16), 55, 25)
union2 (Rectanglel, Rectangle2, ClutterRegion)

Now we can set the clutter region, ’clutter_region’, and use the transformation matrix of the found model
instance, ’HomMat2D’, to define the clutter transformation ’clutter_hom_mat_2d4’.

set_generic_shape_model_object (ClutterRegion, ModelXLDID, 'clutter_region')
set_generic_shape_model_param (ModelXLDID, 'clutter_hom_mat_2d', HomMat2D)

Clutter and speed

Setting clutter is suitable to select matches but contrary to other options (see section 3.2.9 on page 72) it does not
reduce the runtime.

Clutter regions have their impact only at the end of the matching pipeline. This means, possible candidates are
tracked through the image pyramid and only at the end the clutter region is checked based on the set clutter param-
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eters. Thus, no candidate is rejected when tracking the candidates through the image pyramid. As a consequence,
the runtime for a search using clutter is always at least as high as when returning all matches.

3.2.6.6 Specify the Needed Accuracy: ’subpixel’, ’max_deformation’

Different aspects can affect the accuracy of a match, e.g., how precisely it is located (refinement: ’subpixel?), if
it is slightly deformed (’max_deformation’), or its point of reference may be inapt. In this section we will have
a look at these influences.

The matching process locates found instances in two steps:

1. Find coarse matches

2. Refine the matches

In the first step matches are located with an accuracy of 1 pixel for the position (’row’, ’column’) while the
accuracy of the orientation and scale is equal to the values selected for the parameters ’angle_step’ and
’scale_step’ (or the corresponding parameters for anisotropic scaling), respectively (see section 3.2.6.1 on
page 64 and section 3.2.4.3 on page 60). The following refinement is optional and can be determined using the
parameter ’subpixel’:

’none’: No refinement is performed.

’interpolation’: HALCON examines the matching scores at the neighboring positions, angles, and scales
around the best match and determines the maximum by interpolation. Using this method, the position is
therefore estimated with subpixel accuracy (= % pixel can be achieved). The accuracy of the estimated
orientation and scale depends on the size of the object, like the optimal values for the parameters ’an-
gle_step’ and ’scale_step’ or the corresponding parameters for anisotropic scaling (see section 3.2.6.1
on page 64 and section 3.2.4.3 on page 60): The larger the size, the more accurately the orientation and scale
can be determined.

’least_squares’, ’least_squares_high’, or ’least_squares_very_high’: A least-squares adjustment
is used instead of an interpolation, resulting in a higher accuracy. However, this method requires additional
computation time.

Sometimes objects are not found or found only with a low accuracy because they are slightly deformed compared
to the model. If your object is most probably deformed, you can allow a maximum deformation of a few pixels
for the model by setting max_deformation’ using set_generic_shape_model_param. For example, if you
set ’max_deformation’ to 2, the contour of the searched object may differ by up to two pixels from the shape
of the model. To get a meaningful score value and to avoid erroneous matches, we recommend to always combine
the allowance of a deformation with a least-squares adjustment. Note that high values for the maximal allowed
deformation increase the runtime and the risk of finding wrong model instances, especially for small models. Thus,
the value should be chosen as small as possible but as high as necessary.

Please note that the accuracy of the estimated position may decrease if you modify the point of reference
(e.g., using set_shape_model_origin or set_generic_shape_model_param). This effect is visualized in
figure 3.16: As you can see in the right-most column, an inaccuracy in the estimated orientation “moves” the
modified point of reference, while the original point of reference is not affected. The resulting positional error
depends on multiple factors, e.g., the offset of the point of reference and the orientation of the found object. The
main point to keep in mind is that the error increases linearly with the distance of the modified point of reference
from the original one (compare the two rows in figure 3.16).

An inaccuracy in the estimated scale also results in an error in the estimated position, which again increases linearly
with the distance between the modified and the original point of reference.

For maximum accuracy in case the point of reference is moved, the position should be determined using the least-
squares adjustment. Note that the accuracy of the estimated orientation and scale is not influenced by modifying
the point of reference.
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Figure 3.16: Two examples for the effect of the inaccuracy of the estimated orientation on a moved point of reference.

3.2.7 Restrict the Search to a Region of Interest

The obvious way to restrict the search space is to apply the operator find_generic_shape_model not to the
whole image but only to an ROI. Figure 3.17 shows such an example. The reduction of the search space can be
realized in a few lines of code.

Step 1:  Create a region of interest

First, you create a region, e.g., with the operator gen_rectanglel (see section 2.1.1 on page 17 for more ways to
create regions).

Rowl := 141
Columnl := 159
Row2 := 360

Column2 := 477
gen_rectanglel (SearchROI, Rowl, Columni, Row2, Column2)

Figure 3.17: Searching in a region of interest.
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Step 2:  Restrict the search to the region of interest

Then, each search image is reduced to this ROI using the operator reduce_domain. In this example, the search
speed is almost doubled using this method.

for i :=1 to 20 by 1
read_image (SearchImage, 'board/board-' + i$'02')
reduce_domain (SearchImage, SearchROI, SearchImageROI)
find_generic_shape_model (SearchImageRUI, ModelID, MatchResultID, \
NumMatchResult)
endfor

Note that by restricting the search to an ROI you actually restrict the position of the point of reference of the
model, i.e., the center of gravity of the model ROI (see section 2.1.2 on page 18). This means that the size of the
search ROI corresponds to the extent of the allowed movement. For example, if your object can move £ 10 pixels
vertically and £ 15 pixels horizontally you can restrict the search to an ROI of the size 20x30. In order to assure a
correct boundary treatment on higher pyramid levels, we recommend to enlarge the ROI by 2NVumLevels—1 pixe]q
in each direction. Thus, if you specified NumLevels = 4, you can restrict the search to an ROI of the size 36x46.

Please note that even if you modified the point of reference (e.g., using set_shape_model_origin or
set_generic_shape_model_param although this is not recommended), the original one, i.e., the center point
of the model ROI, is used during the search. Thus, you must always specify the search ROI relative to the
original point of reference.

3.2.8 Search for Multiple Models Simultaneously: ModelIDs

If you are searching for instances of multiple models in a single image, you can of course call the operator
find_generic_shape_model multiple times. But a much faster alternative is to call the operator once and
passing the different models simultaneously as a tuple to ModelID. Doing so we would mention the following
points:

e In case of a single model, the resulting match instances contain an entry referring to the identifier of the
respective model.

e To retrieve the result of a specific shape model using get_generic_shape_model_result and
get_generic_shape_model_result_object, respectively, you can pass its identifier or handle to Match-
Selector. See also get_generic_shape_model_result for more information about the MatchSelec-
tor.

e The search is always performed in a single image. However, you can restrict the search to a certain region
for each model individually by passing an image array (see below for an example).

e The search parameters are the ones set for every model.

The example HDevelop program %HALCONEXAMPLESY\solution_guide\matching\multiple_models.hdev
uses the operator find_generic_shape_model to search simultaneously for the rings and nuts depicted in fig-
ure 3.18.

Step 1:  Create the models

First, two models are created and trained, one for the rings and one for the nuts. The two model IDs are then
concatenated into a tuple using the operator assign.

create_generic_shape_model (ModelIDRing)
set_generic_shape_model_param (ModelIDRing, 'iso_scale_min', 0.8)
set_generic_shape_model_param (ModelIDRing, 'iso_scale_max', 1.2)
train_generic_shape_model (ImageROIRing, ModelIDRing)
create_generic_shape_model (ModelIDNut)
set_generic_shape_model_param (ModelIDNut, 'iso_scale_min', 0.6)
set_generic_shape_model_param (ModelIDNut, 'iso_scale_max', 1.4)
train_generic_shape_model (ImageROINut, ModelIDNut)

ModelIDs := [ModelIDRing,ModelIDNut]

Note how we set different model parameters restricting possible scaling.
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Figure 3.18: Searching for multiple models : a) models of ring and nut; b) search ROIs for the two models.

Step 2:  Specify individual search ROIs

In the example, the rings and nuts appear in non-overlapping parts of the search image. Therefore, it is possible
to restrict the search space for each model individually. As explained in section 3.2.7 on page 70, a search ROI
corresponds to the extent of the allowed movement. Thus, narrow horizontal ROIs can be used in the example (see
figure 3.18b).

The two ROIs are concatenated into a region array (tuple) using the operator concat_obj and then “added” to the
search image using the operator add_channels, i.e., in each region the corresponding gray values of the search
image are “painted”. The result of this operator is an array of two images, both having the same image matrix.
The domain of the first image is restricted to the first ROI and the domain of the second image is restricted to the
second ROLI.

gen_rectanglel (SearchROIRing, 110, 10, 130, Width - 10)
gen_rectanglel (SearchROINut, 315, 10, 335, Width - 10)
concat_obj (SearchROIRing, SearchROINut, SearchROIs)
add_channels (SearchROIs, SearchImage, SearchImageReduced)

Step 3:  Find all instances of the two models

Now, the operator find_generic_shape_model is applied to the created image array. Note that we can set the
search parameters for each model individually. In this example we access the found instances and their model
identifier one by one for illustration purpose, but we could also have accessed them all at once using a different
match selector.

find_generic_shape_model (SearchImageReduced, ModelIDs, MatchResultID, \
NumMatchResult)
for i := 0 to NumMatchResult - 1 by 1
get_generic_shape_model_result (MatchResultID, i, 'model_identifier', \
Model)
get_generic_shape_model_result_object (Objects, MatchResultID, i, \
'contours')
dev_display (Objects)
endfor

3.2.9 Optimize the Matching Speed

In the following, we show how to optimize the matching process in two steps. Please note that in order to optimize
the matching it is very important to have a set of representative test images from your application in which the
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object appears in all allowed variations regarding its position, orientation, occlusion, and illumination.
Step 1:  Assure that all objects are found

Before tuning the parameters for speed, we recommend to find settings such that the matching succeeds in all test
images, i.e., that all object instances are found. If this is not the case when using the default values, check whether
one of the following situations applies:

Is the search algorithm ‘“too greedy”?

As described in section 2.4.3 on page 29, in some cases a perfectly visible object is not found if the ’greed-
iness’ is too high. Select the value 0 to force a thorough search.

Is the object partly occluded?

If the object should be recognized in this state nevertheless, reduce the parameter *min_score’ . For further
information see section 3.2.6.2 on page 64.

Does the matching fail on the highest pyramid level?

As described in section 3.2.6.2 on page 64, in some cases the minimum score is not reached on the highest
pyramid level even though the score on the lowest level is much higher. Test this by reducing *num_levels’
. Alternatively, set pyramid_level_highest’ or reduce ’min_score’ .

Does the object have a low contrast?

If the object should be recognized in this state nevertheless, reduce the parameter *min_contrast’ (see
set_generic_shape_model_param and section 3.2.4.1 on page 58).

Is the polarity of the contrast inverted globally or locally?

If the object should be recognized in this state nevertheless, use the appropriate value for the parameter
’metric’ when creating the model (see section 3.2.4.5 on page 62). If only a small part of the object is
affected, it may be better to reduce *min_score’ instead.

Does the object overlap another instance of the object?

If the object should be recognized in this state nevertheless, increase the parameter *max_overlap’ (see
section 3.2.6.4 on page 66).

Are multiple matches found on the same object?

If the object is almost symmetric, restrict the allowed range of rotation as described in section 3.2.6.1 on
page 64 or decrease the parameter max_overlap’ (see section 3.2.6.4 on page 66).

Step 2:  Tune the Parameters Regarding Speed

If all objects are found but the application needs to be sped up, there are some ways to tune it, depending on both
the model and the search parameters. Having a look at the runtime of the main parts of the matching pipeline
can be a good indicator which steps of the search have significant/relevant speedup potential. Note that the time
measurements will vary between calls, as they are strongly influenced by external factors such as, e.g., operating
system interrupts or other processes like, e.g., antivirus software. The time measurements can be activated us-
ing set_generic_shape_model_param with 'pipeline’. The result handles of the matching operation can then
be queried using get_generic_shape_model_result and show the runtime along the matching pipeline. If
significant time is spent in the top level stage, you could proceed like this:

e Increase ’min_score’ as far as possible, i.e., as long as the matching succeeds.

e Now, increase ’greediness’ until the matching fails. Try reducing ’min_score’ . If this does not help
restore the previous values.

e Restrict the allowed range of rotation and scale as far as possible as described in section 3.2.6.1 on page
64 and similar for the scaling. Alternatively, adjust the corresponding parameters already at model level as
described in section 3.2.4.3 on page 60.

e Restrict the search to a region of interest as described in section 3.2.7 on page 70.

If significant time is spent in the tracking part and one is willing to trade off accuracy and robustness against speed,
an approach would be this:

e Terminate the search on a higher pyramid level as described in section 3.2.4.2 on page 59.
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e Restrict the maximally allowed model deformation (see also section 3.2.6.6 on page 69)
If the subpixel refinement takes a significant time in the matching pipeline, you could proceed like this:

e Switch subpixel refinement to ’interpolation’ or even switch it off with none’ to trade off accuracy
against speed.

When acquiring your images and creating your model you can already influence the speed of the search signifi-
cantly by preferring models with dominant structures to models with weak structures (see also section 3.2.4.2 on
page 59).

These additional methods are more “risky”, i.e., the matching may fail if you choose unsuitable parameter val-
ues:

e Increase ’min_contrast’ aslong as the matching succeeds.

e If you are searching for a particularly large object, it typically helps to select a higher point reduction with
the parameter ’optimization’ (see section 3.2.4.2 on page 59).

e Increase ’angle_step’ (and ’iso_scale_step’ or the corresponding parameters for anisotropic scaling)
as long as the matching succeeds.

3.2.10 Use Multiple Shape-Based Matching Results

Shape-based matching can return multiple instances of a model and additionally can deal with multiple models
simultaneously. How to use these specific results is described in section 3.2.10.1 and section 3.2.10.2.

3.2.10.1 Deal with Multiple Matches

If multiple instances of the object are searched and found, the handle MatchResultID con-
tains multiple entries. They are accessible by get_generic_shape_model_result and
get_generic_shape_model_result_object, respectively.

Note, in this example we access the results one by one in order to illustrate how you can retrieve further character-
istics of every found instance as e.g., the transformation matrix and the position of the instance. But we could also
have accessed them all at once using a different match selector, see get_generic_shape_model_result.

find_generic_shape_model (SearchImage, ModelID, MatchResultID, \
NumMatchResult)

for j := 0 to NumMatchResult - 1 by 1

get_generic_shape_model_result_object (Objects, MatchResultID, j, \
'contours')
get_generic_shape_model_result (MatchResultID, j, 'hom_mat_2d', \
HomMat2D)

get_generic_shape_model_result (MatchResultID, j, 'row', Row)
get_generic_shape_model_result (MatchResultID, j, 'column', Column)
affine_trans_pixel (HomMat2D, -120, O, RowArrowHead, ColumnArrowHead)
disp_arrow (WindowHandle, Row, Column, RowArrowHead, ColumnArrowHead, 2)

endfor

In this example, the transformation is also used to display an arrow that visualizes the orientation (see figure 3.19).
For this, the position of the arrow head is transformed using affine_trans_pixel with the transformation matrix
resulting from the instance. If you want to transform the matches yourself, you must use affine_trans_pixel
and not affine_trans_point_2d.

3.2.10.2 Deal with Multiple Models

When searching for multiple models simultaneously as described in section 3.2.8 on page 71, it is useful
to store the information about the models, i.e., the XLD models, in tuples. The following example code
stems from the already partly described HDevelop program %HALCONEXAMPLESY\solution_guide\matching\
multiple_models.hdev, which uses the operator find_generic_shape_model to search simultaneously for
the rings and nuts depicted in figure 3.18 on page 72.
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Figure 3.19: Displaying multiple matches; the used model is depicted in figure 3.11a on page 65.

As already shown in section 3.2.10, you can access the found instances of the different models directly. In this
example we access them one by one to retrieve also the respective model identifier.

find_generic_shape_model (SearchImageReduced, ModelIDs, MatchResultID, \
NumMatchResult)
for i := 0 to NumMatchResult - 1 by 1
get_generic_shape_model_result (MatchResultID, i, 'model_identifier', \
Model)
get_generic_shape_model_result_object (Objects, MatchResultID, i, \
'contours')
dev_display (Objects)
endfor

3.2.11 Adapt to a Changed Camera Orientation

As shown in the sections above, HALCON’s shape-based matching allows to localize objects even if their position
and orientation in the image or their scale changes. However, the shape-based matching fails if the camera observes
the scene under an oblique angle, i.e., if it is not pointed perpendicularly at the plane in which the objects move,
because an object then appears distorted due to perspective projection. Even worse, the distortion changes with the
position and orientation of the object.

In such a case you can on the one hand rectify images before applying the matching. This is a three-step process:
First, you must calibrate the camera, i.e., determine its position and orientation and other parameters, using the
operator calibrate_cameras (see Solution Guide III-C, section 3.2 on page 61). Secondly, the calibration data
is used to create a mapping function via the operator gen_image_to_world_plane_map, which is then applied
to images with the operator map_image (see Solution Guide III-C, section 3.4 on page 80).

On the other hand, you can also use the uncalibrated perspective deformable matching. It works similar to the
shape-based matching but already considers perspective deformations of the model and returns a projective trans-
formation matrix (2D homography) instead of a 2D pose consisting of a position and an orientation. Additionally,
a calibrated perspective deformable matching is provided for which a camera calibration has to be applied and
which results in the 3D pose of the object. For further information on perspective deformable matching please
refer to section 3.5 on page 100 or to the Solution Guide I, chapter 10 on page 89 for the uncalibrated case and
Solution Guide III-C, section 4.6 on page 114 for the calibrated case.

Note that if the same perspective view is used for all images, rectifying the images before applying the matching
is faster and more accurate than using the perspective deformable matching. But if different perspective views are
needed, you must use the perspective matching.
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3.3 Component-Based Matching

The component-based matching is an extension of the shape-based matching. Like shape-based matching, the
component-based matching extracts contours and matches their shapes against the shapes of previously created
models. But in contrast to shape-based matching, a component model consists of several components that can
change their relations, i.e., they can move and rotate relative to each other. The possible relations have to be
determined or specified when creating the model. Then, the actual matching returns the individual relations for the
found model instances. Note that in contrast to shape-based matching, for component-based matching no scaling
in size is possible.

The task of locating components that can move relative to each other is a little bit more complex than the process
needed for a shape-based matching. For example, instead of a single ROI several ROIs (containing the initial
components) have to be selected or extracted. Additionally, the relations, i.e., the possible movements between
the model components have to be determined. For an overview, figure 3.20 illustrates the main steps needed for a
component-based matching.

Extract Initial Components

If movable object parts are —
known, select ROIs manually
ol Create Model
To automatically segment _//
potentially movable parts use To obtain the relations from known |_|

position and angle variations use

gen_initial_components

create_component_model

or /
To obtain the relations from

training images use

Search Model

train_model_components and
create_trained_component_model

find_component_model

Figure 3.20: Main steps of component-based matching.

For detailed information, the following sections show

* a first example for a component-based matching (section 3.3.1),

* how to extract the initial components of a component model (section 3.3.2 on page 78),
* how to create a suitable component model (section 3.3.3 on page 79),

* how to apply the search (section 3.3.4 on page 87), and

* how to deal with the results that are specific for component-based matching (section 3.3.5 on page 89).

3.3.1 A First Example

In this section we give a quick overview of the matching process with component-based matching. To follow
the example actively, start the HDevelop program %HALCONEXAMPLESY,\hdevelop\Applications\Position-
Recognition-2D\cbm_bin_switch.hdev, which locates instances of a switch that consists of two components
and determines if the setting of each found switch is on’ or ’off’.
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Step 1:  Extract the initial components

First, the reference image is read. It shows a switch with the setting "on’ (see figure 3.21, left). As it consists of two
parts that can move relative to each other, two ROIs are created. Concatenated into a tuple (InitialComponents),
the regions build the initial components.

read_image (ModelImage, 'bin_switch/bin_switch_model')
gen_rectanglel (Regionl, 78, 196, 190, 359)

gen_rectanglel (Subl, 150, 196, 190, 321)

difference (Regionl, Subl, InitialComponents)

gen_rectanglel (Region2, 197, 204, 305, 339)

gen_rectanglel (Sub2, 205, 232, 285, 314)

difference (Region2, Sub2, InitialComponent)

concat_obj (InitialComponents, InitialComponent, InitialComponents)
dev_display (ModelImage)

dev_display (InitialComponents)

Training image

Figure 3.21: (left) reference image with the two initial components (switch is ‘on’); (right) training image (switch is
‘off’).

Step 2:  Train the possible relations between the components

Then, the relations between the components have to be determined. Here, they are obtained by a training. An-
other method that is very common in practice is to manually define the possible relations (see section 3.3.3 on
page 79). For the training, a training image is read (see figure 3.21, right). As only two different relations of
the initial components are valid (one for the setting ’on’ and one for the setting "off”), a single training image
showing the setting *off” together with the reference image showing the setting *on’ are sufficient for the training.
If more than two relations were valid, more training images would be needed. Using the reference image, the
initial components, the training image, and several parameters that control the training, the training is applied with
train_model_components.

read_image (TrainingImage, 'bin_switch/bin_switch_training_1')

train_model_components (ModelImage, InitialComponents, TrainingImage, \
ModelComponents, 30, 30, 20, 0.7, -1, -1, rad(25), \
'speed', 'rigidity', 0.2, 0.5, ComponentTrainingID)

Step 3:  Create the component model

If the result of the training is satisfying, the component model can be created. To make the model less strict, before
the creation small tolerances are added to the obtained relations using modify_component_model.

modify_component_relations (ComponentTrainingID, 'all', 'all', 1, rad(1))

create_trained_component_model (ComponentTrainingID, 0, rad(360), 10, 0.7, \
'auto', 'auto', 'none', 'use_polarity', \
'false', ComponentModelID, RootRanking)



B-78 The Individual Approaches

Step 4:  Find the component model and derive the corresponding relations

Now, the search images are read and instances of the component model are searched with
find_component_model. For each match, the individual components and their relations are queried using
get_found_component_model. Dependent on the angle between the components, the procedure visual-
ize_bin_switch_match visualizes the setting of the found switch.

read_image (SearchImage, 'bin_switch/bin_switch_' + ImgNo)
find_component_model (SearchImage, ComponentModelID, 1, 0, rad(360), 0, \
0, 1, 'stop_search', 'prune_branch', 'none', 0.6, \
'least_squares', 0, 0.85, ModelStart, ModelEnd, \
Score, RowComp, ColumnComp, AngleComp, ScoreComp, \
ModelComp)
dev_display (SearchImage)
for Match := 0 to |ModelStart| - 1 by 1
get_found_component_model (FoundComponents, ComponentModelID, \
ModelStart, ModelEnd, RowComp, \
ColumnComp, AngleComp, ScoreComp, \
ModelComp, Match, 'false', RowCompInst, \
ColumnCompInst, AngleCompInst, \
ScoreCompInst)
dev_display (FoundComponents)
visualize_bin_switch_match (AngleCompInst, Match, WindowHandle)
endfor

2 object(s) found in 15.21 ms

Switch 0 is off

Switch 1 is o

Press mouse button to finish.

Figure 3.22: Instances of the component model in a search image and their determined switch settings.

The following sections go deeper into the details of the individual steps of a component-based matching and the
parameters that have to be adjusted.

3.3.2 Extract the Initial Components

In contrast to shape-based matching, a model is not generated from a single ROI but from several concatenated
regions that contain the initial components of the model, i.e., the parts of the model that can move and rotate
relative to each other. The initial components can be extracted by different means:

e If the components are approximately known, the corresponding ROIs can be selected manually and are
concatenated into a tuple (section 3.3.2.1).

e If the initial components are not known, potential candidates can be derived using the operator
gen_initial_components (section 3.3.2.2).
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3.3.2.1 Manual Selection of Initial Components

If the initial components are approximately known, for each component, i.e., for each movable part of the object
of interest, an ROl is selected manually (see section 2.1.1 on page 17 for the selection of ROIs). Then, the ROIs of
all initial components are concatenated into a tuple. An example for the manual selection of the initial components
was already shown in the example in section 3.3.1 on page 76. There, the initial components were built by the
ROIs that were selected for the two parts of a switch that are allowed to change their relation.

3.3.2.2 Automatic Extraction of Initial Components

If the initial components are not known, i.e., if it is not yet clear which parts of an object may move relative to each
other, the potential ROIs have to be derived automatically. This is shown, e.g., in the HDevelop example program
%HALCONEXAMPLESY\hdevelop\Matching\Component-Based\cbm_label_simple.hdev. There, a ’best be-
fore’ label has to be located and the relations of its components have to be determined. The individual components
are not yet known, so in a first step only an ROI containing the complete label is selected (see figure 3.23, left) and
the domain of the image is reduced to this region to obtain a template image. From this template image, the initial
components are derived using gen_initial_components (see figure 3.23, right).

BEST BEFORE END: | BEST BEFORE E fm)

Figure 3.23: (left) ROI that is used to create a template image; (right) automatically derived initial components.

read_image (Image, 'label/label_model')

gen_rectanglel (ModelRegion, 119, 106, 330, 537)

reduce_domain (Image, ModelRegion, ModelImage)

gen_initial_components (ModelImage, InitialComponents, 40, 40, 20, \
'connection', [1, [1)

dev_display (Image)

dev_display (InitialComponents)

Besides the template image the operator expects values for several parameters that control the segmentation of the
components, in particular parameters describing the minimum and maximum contrast needed to extract contours
from the image and the minimum size a connected contour must have to be returned. The functional principle of
these parameters is similar to the parameters that are used for shape-based matching (see section 3.2.4.1 on page
58). Additionally, some generic parameters that control the internal image processing can be adjusted. The influ-
ence of different values for the control parameters is exemplarily shown in the HDevelop example program %HAL-
CONEXAMPLESY\hdevelop\Matching\Component-Based\cbm_param_visual.hdev. In figure 3.24, e.g., a
result of gen_initial_components with a too low contrast is shown. Note that for component-based matching
it is even more important than for the other matching approaches that only those structures are contained in the
model that belong to the object. Otherwise, the contours derived by the noise become initial components as well.

3.3.3 Create a Suitable Component Model

When the initial components are selected or extracted from the reference image, in a second step, the component
model can be created. For the creation of the model the relations between the components have to be known. Thus,
the creation can be realized by different means:
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Figure 3.24: Segmentation of initial components with a too low contrast.

« If the possible relations between the components are already known, the component model can be directly
created using create_component_model (section 3.3.3.1). The relations between the model components
are discussed in more detail in section 3.3.3.2 on page 81.

* If the possible relations are not known, they have to be derived from a set of training images that show all
possible variations of relations (section 3.3.3.3 on page 83).

If the model is created using a training, between the training and the final creation of the model it may be suitable
to

* visualize different training results (section 3.3.3.4 on page 84) or

* modify the training results (section 3.3.3.5 on page 85).
After creating the model, you may want to

* store the created model to file so that you can reuse it in another application (section 3.3.3.6 on page 86), or

* query information from the already existing model (section 3.3.3.7 on page 86).

3.3.3.1 Create Model from Known Relations

If the relations, i.e., the possible movements between the model components are known, you can create the com-
ponent model directly using create_component_model, which creates a component model for a matching based
on explicitly specified components and relations. An example is HALCONEXAMPLESY,\hdevelop\Matching\
Component-Based\cbm_modules_simple.hdev. There, the relations between the individual modules of a com-
pound object that are shown in figure 3.25 are known by the user.

After the ROIs of the components were selected and concatenated the operator create_component_model is
applied.

read_image (ModelImage, 'modules/modules_model')

gen_rectangle2 (ComponentRegions, 318, 109, -1.62, 34, 19)

gen_rectangle2 (Rectangle2, 342, 238, -1.63, 32, 17)

gen_rectangle2 (Rectangle3, 355, 505, 1.41, 25, 17)

gen_rectangle2 (Rectangled4, 247, 448, 0, 14, 8)

gen_rectangle2 (Rectangleb, 237, 537, -1.57, 13, 10)

concat_obj (ComponentRegions, Rectangle2, ComponentRegions)

concat_obj (ComponentRegions, Rectangle3, ComponentRegions)

concat_obj (ComponentRegions, Rectangle4, ComponentRegions)

concat_obj (ComponentRegions, Rectangleb5, ComponentRegions)

create_component_model (ModelImage, ComponentRegions, 20, 20, rad(25), 0, \
rad(360), 15, 40, 15, 10, 0.8, [4, 3, 3, 3, 3], 0, \
'none', 'use_polarity', 'true', ComponentModelID, \
RootRanking)
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Figure 3.25: Initial components of a compound object with known relations.

Note that instead of the explicit relations the variations of the positions and the angles of the model components are
passed to the operator. These describe the movements of the components independently from each other but rela-
tive to their positions in the reference image. That is, if a search image would be transformed so that the complete
compound object is positioned and oriented approximately as in the reference image, the individual components
may differ from their corresponding model components for VariationRow/2 pixels in row direction, Variation-
Column/2 pixels in column direction, and VariationAngle/2 in their orientation. If single values are passed to
the variation parameters, they are valid for all components. If tuples of values are passed, they must contain a value
for each component. In figure 3.26 the variations for the components of figure 3.25 are illustrated. In particular,
the gray arrows show the range of movement allowed for the point of reference of the individual components and
the gray rectangles show the allowed rotation. The operator create_component_model automatically derives the
relations between the components from the variations and uses them to create the component model.

m o

Figure 3.26: Variations (gray) of the model components (black) that are used to automatically derive the relations
between the model components (VariationRow=20, VariationAngle=rad(25)).

3.3.3.2 Search Tree and Relations Between Model Components

Whereas the manually selected variations show the allowed movements and rotations of the individual components
relative to their position in the template image, the relations show the allowed movements and rotations of the
components relative to a reference component.
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The relations can be queried together with the search tree using get_component_model_tree. The search tree
specifies in which sequence the components are searched and how they are searched relative to each other. It
depends on the selected root component, i.e., the component that is searched first (how to select the root component
is described in section 3.3.4.2 on page 87). The reference component used to calculate the relations of an individual
component is the component’s predecessor in the search tree. For example, in the search tree that is shown in
figure 3.27 for the compound model of the example program, the leftmost component is the root component and
the components are searched in the direction indicated by the dim gray lines.

Figure 3.27: Relations (light gray) and search tree (dim gray) for the model components (black) relative to the
automatically derived root component.

If a component model is obtained by a training with multiple training images (see section 3.3.3.3), you can also use
get_component_relations to query the relations between the components that are determined by the training.
Then, no search tree is used as basis for the calculations. Instead, the reference component used to calculate the
relations of the components is always the selected root component. Thus, the relations returned by both operators
differ significantly. Note that get_component_relations is mainly used to evaluate the success of a training
before creating the corresponding component model, whereas get_component_model_tree is applied after the
creation of the model to visualize the search space used for the actual matching (see also section 3.3.3.4 on page
84 and figure 3.31 on page 85).

In both cases, the relations are returned as regions and as numerical values. In particular, the following information
is obtained:

* The positions of the points of reference for all components are represented as small circles. The corre-
sponding numerical values are the coordinates of the positions that are returned in the parameters Row and
Column.

» The orientation relations for all components except the root component, i.e., the variations of the orientations
relative to the respective reference components are represented by circle sectors with a fixed radius that
originate at the mean relative positions of the components. The corresponding numerical values are the
angles that are returned in the parameter Phi.

» The position relations for all components except the root component, i.e., the movements of the reference
points of the specific components relative to the reference point of their reference component are represented
as rectangles. The corresponding numerical values are the parameters of the rectangle Lengthl, Length2,
AngleStart, and AngleExtent.

If the model is created by manually selected variations, the derived relations show certain regularities. In particular,
each rectangle is approximately orthogonal to the view from the predecessor to the searched component and the
width of the rectangle orthogonally to this view depends on the angle variation and the distance between the two
components. That is, with an increasing distance between the components the width of the rectangle increases, too
(see figure 3.27). For models that are obtained by a training as described in the following section, the behavior is
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different, because the relations are then obtained by arbitrary relations of the components in the training images in-
stead of regular variations. Thus, also arbitrary orientations and sizes of the rectangles are possible (see figure 3.31
on page 85).

3.3.3.3 Create Model from Training Images

If the relations are not explicitly known, you have to determine them using training images that show the needed
variety of relations.

For example, in the HDevelop example program %HALCONEXAMPLESY\hdevelop\Matching\Component-
Based\cbm_label_simple.hdev several training images are read and concatenated into a tuple
(TrainingImages). These training images show the already introduced ’best before’ label with different
relations between its individual parts (see also section 3.3.2.2 on page 79).

gen_empty_obj (TrainingImages)
for Index := 1 to 5 by 1
read_image (TrainingImage, 'label/label_training ' + Index)
concat_obj (TrainingImages, TrainingImage, TrainingImages)
endfor

For the training of the components and relations the operator train_model_components is applied. The training
is controlled by a set of different parameters, which are described in detail in the Reference Manual. During
the training, from the initial components the model components are derived by a clustering. For example, if you
compare the initial components in figure 3.23 on page 79 (right) with the model components in figure 3.28 (right),
you see that those initial components that have the same relations in all training images are merged.

29 /11 /02

Figure 3.28: (left) one of several training images; (right) the model components for the component model.

train_model_components (ModelImage, InitialComponents, TrainingImages, \
ModelComponents, 40, 40, 20, 0.85, -1, -1, rad(15), \
'reliability', 'rigidity', 0.2, 0.5, \
ComponentTrainingID)

dev_display (Image)

dev_display (ModelComponents)

After the training, the component model that is based on the trained components is created with cre-
ate_trained_component_model. Before the creation, modify_component_relations is applied to add small
tolerance values to the relations and thus make the model less strict.

modify_component_relations (ComponentTrainingID, 'all', 'all', 15, rad(5))
create_trained_component_model (ComponentTrainingID, -rad(30), rad(60), 10, \
0.8, 'auto', 'auto', 'mone', \
'use_polarity', 'false', ComponentModelID, \
RootRanking)
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Note that gen_initial_components, which was introduced in section 3.3.2.2 on page 79 for the automatic
derivation of the initial components for a model, can be used also to test different values for the control parameters
ContrastLow, ContrastHigh, and MinSize that have to be adjusted for the training of the model components.
Thus, for the training of a component model the operator can be used similar as inspect_shape_model is used
for shape-based matching (see section 3.2.5.1 on page 63).

3.3.3.4 Visualize the Training Results

The training with train_model_components returns the final model components and trains the relations between
them. Different results of the training can be visualized. In particular, you can visualize

* the initial components or the final model components in a specific image,
* the relations between the components, and

e the search tree.

To visualize all final model components, all initial components, or a specific initial component for a specific
image, you apply the operator get_training_components. There, you specify amongst others if the model
components, the initial components, or a specific initial component should be queried and in which image the
components should be searched. Besides the numerical results (Row, Column, Angle, and Score), the contours of
the initial components or model components are returned and can be visualized.

get_training components (ModelComponents, ComponentTrainingID, \
'model_components', 'model_image', 'false', \
Row, Column, Angle, Score)

dev_display (Image)

dev_display (ModelComponents)

The HDevelop example program  %HALCONEXAMPLESY,\hdevelop\Matching\Component-Based\
cbm_param_visual.hdev shows the use of different visualization and analysis tools provided for the
component-based matching. For example, in figure 3.29 a specific initial component (the first 'B’ of the "best
before’ label) is obtained from the template image, whereas in figure 3.30 it is obtained from a training image.
The result differs, because within the training image the ambiguities are not yet solved.

BEST BEFORE END:

29 /11 /02

Figure 3.29: (left) Template image; (right) component '2’ in the template image.

To check the quality of a training, you can use get_component_relations to query the relations of the com-
ponents that are returned by the training. How to interpret the returned regions and numerical values is shown in
section 3.3.3.2 on page 81.

count_obj (ModelComponents, NumComp)
for T := 0 to NumComp - 1 by 1
get_component_relations (Relations, ComponentTrainingID, I, \
'model_image', Row, Column, Phi, Lengthl, \
Length2, AngleStart, AngleExtent)
dev_display (Relations)
endfor

If the result of the training is not satisfying you can repeat the training with different conditions (different pa-
rameters, different training images etc.). If the training is satisfying, you can create the component model.
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Figure 3.30: (left) Training image; (right) component "2’ in the training image.

After creating the component model, you can visualize the search tree and the corresponding relations using
get_component_model_tree. Thatis, you can visualize the search space that is actually used for the later search
(assuming that you select the same root component for the visualization of the search tree and for the search).

create_trained_component_model (ComponentTrainingID, -rad(30), rad(60), 10, \
0.8, 'auto', 'auto', 'mone', \
'use_polarity', 'false', ComponentModelID, \
RootRanking)
for I := 0 to |RootRanking| - 1 by 1
get_component_model_tree (Tree, Relations, ComponentModelID, \
RootRanking[I], 'model_image', StartNode, \
EndNode, Row, Column, Phi, Lengthl, Length2, \

AngleStart, AngleExtent)
dev_display (Tree)

dev_display (Relations)
endfor

The difference between the relations obtained for the training result with get_component_relations and those
obtained for the created model with get_component_model_tree is illustrated in figure 3.31. In particular,
get_component_relations calculates the relations of all components relative to the root component, whereas

get_component_model_tree calculates the relations of the individual components relative to their predecessor
in the search tree.

Figure 3.31: (left) Result of get_component_relations: relations of the model components relative to component 1

(“"BEST BEFORE END?”); (right) result of get_component_model_tree: relations within the search tree
using component 1 as root component.

3.3.3.5 Modify the Training Results

Sometimes, the training returns results that are not exactly the desired ones and thus have to be modified. Besides
a new training with different parameters or more suitable training images, there are two cases in which a further
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modification is possible after the training. In particular, you can modify

* the clustering that was used to derive the model components from the initial components and

* the relations between the model components.

During the training the rigid model components were derived from the initial components by a clustering that is
controlled by the parameters AmbiguityCriterion, MaxContourOverlap, and ClusterThreshold. After a
first training you can apply inspect_clustered_components to test different values for these parameters. If a
suitable set of values is found that does not correspond to the values used for the first training, the new set of values
can be added to the training result with cluster_model_components as is shown, e.g., in the HDevelop example
program %HALCONEXAMPLESY\hdevelop\Matching\Component-Based\cbm_param_visual.hdev.

Besides the modification of the model components, it is sometimes suitable to change the relations between the
model components. This modification can be applied with modify_component_relations and is often used
to add small tolerance values to the relations (see figure 3.32) to make the matching less strict. Examples were
already shown in section 3.3.1 on page 76 and section 3.3.3.3 on page 8§3.

@G

Figure 3.32: (black) Component relations obtained by the training; (gray) component relations after modification.

3.3.3.6 Reuse the Model

Often, it is useful to split the creation of the model (offline part) from the search of the model (online part). Then, a
created component model can be stored to file using write_component_model. With read_component_model
it can be read from the file again for the online process. Furthermore, write_training_components can be used
to store training results to file and read_training_components can be used to read them from file again.

3.3.3.7 Query Information from the Model

At different steps of a matching application it may be necessary or suitable to query information from a model.

After the training, the different training results can be queried as introduced in section 3.3.3.4 on page
84. In particular, you can query the initial components or the model components in a specific image with
get_training_components and the relations between the model components that are contained in a training
result with get_component_relations.

Additionally, the rigid model components obtained by the training can be inspected with in-
spect_clustered_components as introduced in section 3.3.3.5 on page 85.

After the creation of a model, respectively when reading an already existing component model from file, you can
query the search tree and the associated relations of the component model with get_component_model_tree.
Additionally, you can query the parameters of the model with get_component_model_params. The returned
parameters describe the minimum score the returned instances must have (MinScoreComp), a ranking of the model
components concerning their suitability to be a root component (RootRanking), and the handles of the shape
models of the individual components (ShapeModelIDs). The RootRanking is useful to select a suitable root
component for the later search (see section 3.3.4.2). The handles of the individual shape models can be used, e.g.,
to query the parameters for the shape models of each component using get_shape_model_param.
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3.3.4 Search for Model Instances

The actual matching is performed by the operator find_component_model. In the following, we show how to
select suitable parameters for this operator to adapt and optimize a matching task. In particular, we show how to

* restrict the search space to a region of interest (section 3.3.4.1),
* specify the root component via the parameter RootComponent (section 3.3.4.2),

* restrict the range of orientation for the search of the root component via the parameters AngleStartRoot
and AngleExtentRoot (section 3.3.4.3),

* specify the visibility of the object via the parameter MinScore (section 3.3.4.4),

« search for multiple instances of the model by adjusting the parameters NumMatches and MaxOverlap (sec-
tion 3.3.4.5),

* adjust the behavior of the search for the case that components are not found via the parameters IfRootNot—
Found, IfComponentNotFound, and PosePrediction (section 3.3.4.6), and

* adjust the internally applied shape-based matching, which is used to search for the individual compo-
nents, via the parameters MinScoreComp, SubPixelComp, NumLevelsComp, and GreedinessComp (sec-
tion 3.3.4.7 on page 89).

3.3.4.1 Restrict the Search to a Region of Interest

Similar to correlation-based matching or shape-based matching, you can restrict the search space for the root
component and thus speed up the matching by applying the operator £ind_component_model not to the whole
image but only to an ROI. The corresponding procedure is explained in more detail for a shape-based matching
in section 3.2.7 on page 70. For component-based matching you simply have to use find_component_model.
Note that although component-based matching is based on shape-based matching, you must not modify the point
of reference of the model’s components using set_shape_model_origin.

3.3.4.2 Specify the Root Component (RootComponent)

The components of a component model are organized in a search tree that specifies the sequence in which the indi-
vidual components of a model are searched (see also section 3.3.3.1 on page 80). That is, first the root component,
which is specified in the parameter RootComponent, is searched in all allowed positions and orientations. Then,
the other components are searched in the sequence that is given by the search tree. In doing so, each component is
searched relative to the component with the previous position in the search tree. Thus, the complete search space
is needed only for the root component, whereas the other components are searched recursively.

As root component a component should be chosen that most probably can be found in the search image. An
alternative criterion is the runtime of the search that is expected for each potential root component. To get the
root component with the best expected runtime, you simply pass the root ranking RootRanking that was returned
during the creation of the model to the parameter RootComponent.

find_component_model (SearchImage, ComponentModelID, RootRanking, \
-rad(30), rad(60), 0.5, 0, 0.5, 'stop_search', \
'prune_branch', 'none', 0.6, 'least_squares', 4, \
0.9, ModelStart, ModelEnd, Score, RowComp, \
ColumnComp, AngleComp, ScoreComp, ModelComp)

3.3.4.3 Restrict the Range of Orientation for the Root Component (AngleStartRoot, AngleExten-
tRoot)

The root component is searched in the allowed range of orientation that is specified by AngleStartRoot and
AngleExtentRoot. We recommend to limit the allowed range of rotation as much as possible in order to speed
up the search process. If necessary, the range of orientation is clipped to the range that was specified when creating
the model.
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3.3.4.4 Specify the Visibility of the Object (MinScore)

With the parameter MinScore you can specify how much of the component model must be visible to be returned as
a match. This is similar to the corresponding parameter of shape-based matching (see section 3.2.6.2 on page 64).
As the visibility of the component model depends on the visibility of the contained components (see section 3.3.4.7
on page 89), please refer to section 3.3.4.6 for the case that individual components are not found.

3.3.4.5 Search for Multiple Instances of the Object (NumMatches, MaxOverlap)

With the parameter NumMatches you can specify the maximum number of instances of a component model that
should be returned. With the parameter MaxOverlap you can specify to which degree instances may overlap. This
parameter is suitable, e.g., to reject instances of the component model that differ only in the poses of one or a few
components from an instance that was found with a higher score. Both parameters are similar to the corresponding
parameters of shape-based matching (see section 3.2.6.4 on page 66).

3.3.4.6 Adjust the Behavior for the Case that Components are not found (IfRootNotFound, If-
ComponentNotFound, PosePrediction)

Sometimes a component is not found, e.g., because of occlusions. For example, in the HDevelop example pro-
gram %HALCONEXAMPLESY%\hdevelop\Applications\Position-Recognition-2D\cbm_dip_switch.hdev
in one of the search images two instances of the model of a dip switch are found, but for one instance some
components are occluded (see figure 3.33). That is, when calling find_component_model, the number of el-
ements returned in the parameters RowComp, ColumnComp, AngleComp, ScoreComp, and ModelComp does not
correspond to the number of expected components (taking the number of found instances into account). How to
examine which specific components of which found instance are missing is described in section 3.3.5.

2 object(s) found in 29.73 ms

Switches ject 00 100 1 1

Switches of object 2: 0 1

Press mouse button to continue

Figure 3.33: For one of two found instances of a component model some components are occluded.

Here, we show how to adjust the behavior of the search for the case that components are not found. In particular,
you can

* adjust the behavior of the search for the case that the root component is not found,

* adjust the behavior of the search for the case that any other component is not found, and

¢ adjust if the position and orientation of a not found component should be ignored or if it should be estimated
based on the positions and orientations of the found components.
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For the case that a root component is not found in a search image, the parameter IfRootNotFound must be
adjusted. If the parameter is set to ’stop_search’ the search is aborted, i.e., for this instance of the model no
other components are searched for. If it is set to ’>select_new_root’ the other components are tested in the
sequence that is given by RootRanking. Note that the latter proceeding is significantly slower than aborting the
search.

For the case that at least one of the other components is not found, the parameter IfComponentNotFound must be
adjusted. It controls how to handle a component that is searched relative to a component that has not been found. If
IfComponentNotFound is setto ’prune_branch’ the component is not searched and therefore also not found. If
itis setto ’search_from_upper’ the component is searched relative to another component. In particular, instead
of the component with the previous position in the search tree, the component that is previous to the not found
component is used as reference for the relative search. If IfComponentNotFound is set to >search_from_best’
the component is searched relative to the component for which the runtime for the relative search is expected to be
minimal.

For the case that not all components are found, you can further select if the 2D poses, i.e., the positions and
orientations, are returned only for the found components (PosePrediction set to *none’) or if the positions and
orientations of the not found components should be returned as an estimation that is based on the neighboring
components (PosePrediction set to >from_neighbors’) or on all found components (PosePrediction set
to from_all’). Note that if an estimated position and orientation is returned, the corresponding return value of
ScoreComp is 0.0.

3.3.4.7 Adjust the Shape-Based Matching that is Used to Find the Components (MinScoreComp,

SubPixelComp,NumLevelsComp, GreedinessComp)

The internal search for the individual components is based on shape-based matching. Therefore, the parameters
MinScoreComp, SubPixelComp, NumLevelsComp, and GreedinessComp correspond to the parameters Min-
Score, SubPixel, NumLevels, and Greediness that are used for shape-based matching (see section 3.2 on page
53). Each of the parameters must contain either a single value that is used for all components or the number of
values must correspond to the number of components. The number of values for NumLevelsComp can also be
two or twice the number of components. For further information, please refer to the Reference Manual entry of
find_component_model.

3.3.5 Use the Specific Results of Component-Based Matching

Each instance of a component model consists of several components that can change their spatial relations. There-
fore, the result of the component-based matching is a bit more complex than that of a shape-based matching. In
particular, the positions and orientations that are returned do not consist of a single value for each found instance of
the model, but consist of values for all returned components. Parameters that return values for all components are
RowComp, ColumnComp, AngleComp, and ScoreComp. The latter returns the scores of the individual components.
From these, the score for each found instance of the component model (Score) is derived.

To know to which component of which found model instance a specific index position of the tuples RowComp,
ColumnComp, AngleComp, and ScoreComp refers, the parameters ModelStart, ModelEnd, and ModelComp are
provided. ModelStart and ModelEnd are needed to know how many instances are returned and to which instance
the returned components belong. ModelComp is needed to know which specific components are returned and
therefore also which specific components are not found.

In particular, the number of returned instances of the component model can be derived from the length of
the tuples ModelStart and ModelEnd. In the HDevelop example program %HALCONEXAMPLESY,\hdevelop\
Applications\Position-Recognition-2D\cbm_dip_switch.hdev, e.g., for the search image shown in fig-
ure 3.33 on page 88, two model instances have been found, i.e., the tuples ModelStart and Mode1lEnd both consist
of two values.

The actual values of the tuples indicate the intervals of the index positions of the tuples RowComp, ColumnComp,
AngleComp, and ScoreComp that refer to the same instance of the component model. In the example program,
ModelStart is [0,13] and ModelEnd is [12,21]. That is, the values with the index positions 0 to 12 refer to the
first instance of the component model and the values with the index positions 13 to 21 refer to the second model
instance. As the component model consists of 13 initial components, we see that for the first model instance all
components have been found, whereas for the second model instance only 9 of 13 components have been found
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Now we know the number of returned instances and for each instance we know the number of returned com-
ponents and their positions, orientations, and scores. But we do not yet know, which of the 13 initial com-
ponents of the model are missing for the second model instance. For this knowledge, we need the parameter
ModelComp that indicates which specific components are found (see figure 3.34). In the example, ModelComp is
[0,1,2,3,4,5,6,7,8,9,10,11,12,0,1,2,7,8,9,10,11,12]. That is, for the first model instance the components 0 to 12,
i.e., all components of the component model have been found. For the second model instance, the components 0
to 2 and the components 7 to 12 have been found. Thus, the components 3 to 6 are missing.

Instance 0 Instance 1
\ Il \

ModelComp =[0,1,2,3,4,5,6,7,8,9,10,11,12, 0,1,2,7,8,9,10,11,12 ]
th

E—
ModelStart = [0,13]  ModelEnd = [12, 21]

Figure 3.34: Meaning of ModelStart, ModelEnd, and ModelComp.

After the matching the components of each found model instance can be queried with
get_found_component_model, so that the result can be visualized as is shown, e.g., for the dip switches
in figure 3.33 on page 88 and figure 3.35. Besides the visualization of the found components by overlaying their
regions on the search image, it is sometimes suitable to apply additional application-specific visualization steps.
Here, e.g., a procedure for the textual interpretation of the result is applied (visualize_bin_switch_match).

NumFound := |ModelStart|
for Match := O to |ModelStart| - 1 by 1
get_found_component_model (FoundComponents, ComponentModelID, \
ModelStart, ModelEnd, RowComp, \
ColumnComp, AngleComp, ScoreComp, \
ModelComp, Match, 'false', RowCompInst, \
ColumnCompInst, AngleCompInst, \
ScoreCompInst)
dev_display (FoundComponents)
visualize_dip_switch_match (RowCompInst, ColumnCompInst, \
AngleCompInst, RowRef, ColumnRef, \
AngleRef, WindowHandle, Match)
endfor

2 object(s) found in 26.80 ms

Press m button to continue

Figure 3.35: Result of component-based matching: two instances of a component model showing a dip switch are
found, although some components are occluded.
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M

Figure 3.36: (left) “MVTec” logo used for the model creation; (right) deformed logo instance overlaid by the model
contours.

3.4 Local Deformable Matching

Like shape-based matching, local deformable matching extracts contours and matches their shapes against the
shapes of previously created models. But in contrast to shape-based matching, slightly deformed contours are not
only found but the deformations are returned as result. Note that the actual location of the object is restricted to
determining its position, whereas the orientation and scale are interpreted as part of the deformation.

The following sections show

* a first example for a local deformable matching (section 3.4.1),

* how to select an appropriate ROI to derive the template image from the reference image (section 3.4.2 on
page 94),

* how to create a suitable model (section 3.4.3 on page 94),
* how to optimize the search (section 3.4.4 on page 96), and

* how to deal with the results that are specific for the local deformable matching (section 3.4.5 on page 98).

3.4.1 A First Example

In this section we give a quick overview of the matching process with local deformable matching. To follow the ex-
ample actively, start the HDevelop example program %HALCONEXAMPLESY\hdevelop\Matching\Deformable\
find_local_deformable_model.hdev, which locates differently deformed “MVTec” logos (see figure 3.36).

Step 1:  Prepare the template

First, the template is prepared. In particular, the procedure create_mvtec_logo_broadened extracts the
“MVTec” logo from an image and creates a synthetic image with a slightly broader logo. The obtained col-
ored image (figure 3.36, left) is transformed into a gray value image from which an ROI, i.e., the template image
(figure 3.37, left) is derived.

create_mvtec_logo_broadened (LogoImage, O, 200, Width, Height)
rgbl_to_gray (LogoImage, GrayImage)

gen_rectanglel (Rectangle, 82, 17, 177, 235)

reduce_domain (GrayImage, Rectangle, ImageReduced)
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Figure 3.37: From left to right: template image, corresponding part of the search image, rectified image.

Step 2:  Create the model

The template image is then used to create a model of the logo using create_local_deformable_model. The
contours of the model can be queried with get_deformable_model_contours, e.g., to overlay a later match by
it to visually inspect the deformations (see figure 3.36, right).

create_local_deformable_model (ImageReduced, 'auto', [1, [1, 'auto', 1, [1, \
'auto', 1, [], 'auto', 'momne', \
'use_polarity', 'auto', 'auto', [1, [I, \
ModelID)

get_deformable_model_contours (ModelContours, ModelID, 1)

Step 3:  Find the object again

The created model is used to find instances of the logo in search images. For demonstration purposes, the example
uses synthetic search images that show the logo with various random deformations. After transforming the colored
images again into the corresponding gray value images (see, e.g., figure 3.37, middle), the matching is applied with
find_local_deformable_model.

rgbl_to_gray (SearchImage, GrayImage)

find_local_deformable_model (GrayImage, ImageRectified, VectorField, \
DeformedContours, ModelID, O, O, 1, 1, 1, 1, \
0.5, 1, 1, 4, 0.9, ['image_rectified', \
'vector_field', 'deformed_contours'], \
['deformation_smoothness', 'expand_border', \
'subpixel'], [Smoothness,0, 1], Score, Row, \
Column)

By default, the operator returns the position of the object in the image. With the parameter ResultType, you can
additionally specify some iconic objects that are returned. In the example program, all available iconic objects,
i.e., a rectified version of the part of the search image that corresponds to the bounding box of the ROI that was
used to create the model (see figure 3.37, right), the vector field that describes the deformations of the matched
model instance, and the contours of the deformed model instance are queried.

Step 4:  Visualize the deformations

To visualize the deformations of a found model instance, the procedure gen_warped_mesh creates a regular grid
and deforms it with the information that is contained in the returned vector field. For that, the vector field is first
converted into the two real-valued images DRow and DCol using vector_field_to_real. For each point of the
model, or more precisely of the bounding box that surrounds the template image, DRow contains the corresponding
row coordinates and DCol the corresponding column coordinates of the search image. Then, a regular grid with the
size of the model is created. The horizontal and vertical grid lines are created in separate loops using the operators
tuple_gen_sequence and tuple_gen_const. Using the images DRow and DCol, for each point of a grid line
get_grayval_interpolated queries the corresponding “deformed” point, i.e., the corresponding coordinates of
the point in the search image. These coordinates are used to create polygons that represent the deformed horizontal
and vertical grid lines.



3.4 Local Deformable Matching B-93

procedure gen_warped_mesh (VectorField, WarpedMesh, Step)
gen_empty_obj (WarpedMesh)
count_obj (VectorField, Number)
for Index := 1 to Number by 1
select_obj (VectorField, ObjectSelected, Index)
vector_field_to_real (ObjectSelected, DRow, DCol)
get_image_size (VectorField, Width, Height)
for ContR := 0.5 to Height[0] - 1 by Step
Coll := [0.5:Width[0] - 1]
tuple_gen_const (Width[0] - 1, ContR, Rowl)
get_grayval_interpolated (DRow, Rowl, Coll, 'bilinear', GrayRow)
get_grayval_interpolated (DCol, Rowl, Coll, 'bilinear', GrayCol)
gen_contour_polygon_xld (Contour, GrayRow, GrayCol)
concat_obj (WarpedMesh, Contour, WarpedMesh)
endfor
for ContC := 0.5 to Width[0] - 1 by Step
Rowl := [0.5:Height[0] - 1]
tuple_gen_const (Height[0] - 1, ContC, Coll)
get_grayval_interpolated (DRow, Rowl, Coll, 'bilinear', GrayRow)
get_grayval_interpolated (DCol, Rowl, Coll, 'bilinear', GrayCol)
gen_contour_polygon_xld (Contour, GrayRow, GrayCol)
concat_obj (WarpedMesh, Contour, WarpedMesh)
endfor
endfor
return ()

The grid is displayed together with the returned contours of the deformed logo as shown in figure 3.38.

dev_display (SearchImage)
dev_display (WarpedMesh)
dev_display (DeformedContours)

Figure 3.38: Search image (before transforming it into a gray value image) with the grid that illustrates the deforma-
tions of the matched “MVTec” logo.

The difference between the returned rectified image and the template image is visualized as shown in figure 3.39.

crop_domain (ImageReduced, ImagePart)
abs_diff_image (ImagePart, ImageRectified, ImageAbsDiffl, 1)
dev_display (ImageAbsDiff1l)
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Figure 3.39: Difference between the rectified image and the template image.

The following sections go deeper into the details of the individual steps of a local deformable matching and the
parameters that have to be adjusted.

3.4.2 Select the Model ROI

As a first step of the local deformable matching, the region of interest that specifies the template image must be
selected as described, e.g., in section 2.1.1 on page 17. This region can have an arbitrary shape, i.e., it can also
contain holes or consist of several parts that are not connected. Thus, it is possible to create an ROI that contains
only “robust” parts of the object. The ROI must be selected so that it contains all prominent structures of the object
and also some pixels outside of them, as their immediate surroundings (neighborhood) are needed to obtain the
model. Furthermore, you can speed up the later search using a subsampling (see section 3.4.3.2). For that, the ROI
should not be too “thin”, because otherwise it vanishes at higher pyramid levels! As a rule of thumb, you are on
the safe side if an ROI is 2VumlLevels—1 pixels wide. That is, a width of 8 pixels allows to use 4 pyramid levels.
After having selected a suitable ROI, the reduced image is used as template image for the creation of the model.

3.4.3 Create a Suitable Local Deformable Model

Having derived the template image from the reference image, the local deformable model can be created. Note
that the local deformable matching consists of different methods to find the trained objects in images. Depending
on the selected method, one of the following operators is used to create the model:

* create_local_deformable_model creates a model for a local deformable matching that uses a template
image to derive the model.

e create_local_deformable_model_x1d creates a model for a local deformable matching that uses XLD
contours to derive the model. Note that after a first match, it is strongly recommended to determine the
polarity information for the model with set_local_deformable_model_metric (see section 2.1.3.2 on
page 22 for details).

Here, we will take a closer look at how to adjust the corresponding parameters. In particular, you can

* specify which pixels are part of the model by adjusting the parameter Contrast (section 3.4.3.1),

* speed up the search by using a subsampling, i.e., by adjusting the parameter NumLevels, and by reducing
the number of model points, i.e., by adjusting the parameter Optimization (section 3.4.3.2),

* specify which pixels are compared with the model in the later search by adjusting the parameters MinCon-
trast and Metric (section 3.4.3.4 on page 96), and

* adjust some additional (generic) parameters within GenParamName and GenParamValue, which is needed
only in very rare cases (section 3.4.3.5 on page 96).

Note that when adjusting the parameters you can also let HALCON assist you:
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» Use automatic parameter suggestion:

You can let HALCON suggest suitable values for many of these parameters by either setting the correspond-
ing parameters to the value ’auto’ within the operator that is used to create the model or by applying
determine_deformable_model_params to automatically determine values for a local deformable model
from a template image and then decide individually whether you use the suggested values for the creation
of the model. Note that both approaches return only approximately the same values and the values that are
returned by the operators that are used to create the model are more precise.

* Apply inspect_shape_model:

As the local deformable matching uses XLD contours to build the model, which is similar to shape-based
matching, you can use inspect_shape_model to try different values for the parameters NumLevels and
Contrast. The operator returns the resulting representation of a shape model with multiple pyramid levels
and thus allows you to visually check if the object of interest is represented adequately by the model. If
several combinations of parameter values do not lead to a satisfying representation of the object, maybe the
template image, i.e., the model’s ROI was not selected properly. How to select a suitable ROI is described
in section 2.1 on page 17.

Note that after the creation of the model, the model can still be modified. In section 3.4.3.6 the possibilities for the
inspection and modification of an already created model are shown.

3.4.3.1 Specify Pixels that are Part of the Model (Contrast)

For the model those pixels are selected whose contrast, i.e., gray value difference to neighboring pixels, exceeds a
threshold specified by the parameter Contrast when calling create_local_deformable_model. The parame-
ter Contrast is similar to the corresponding parameter of shape-based matching that is described in more detail
in section 3.2.4.1 on page 58. The only difference is that here small structures are not suppressed within Con-
trast but with the separate generic parameter min_size’ that is set via GenParamName and GenParamValue
as described in section 3.4.3.5.

3.4.3.2 Speed Up the Search using Subsampling and Point Reduction (NumLevels, Optimization)

To speed up the matching process, subsampling can be used (see also section 2.4.2 on page 28). There, an image
pyramid is created, consisting of the original, full-sized image and a set of downsampled images. The model is
then created and searched on the different pyramid levels.

You can specify how many pyramid levels are used via the parameter NumLevels. A further reduction of model
points can be enforced via the parameter Optimization. This may be useful to speed up the matching in the case
of particularly large models. The functional principle of both parameters is similar to the parameters that are used
for shape-based matching (see section 3.2.4.2 on page 59).

3.4.3.3 Allow a Range of Orientation (AngleExtent, AngleStart, AngleStep) and Scale (Scale*Min,
Scalex*Max, Scalex*Step)

Note that AngleStart, AngleExtent, ScaleRMax, and ScaleCMax are not used by this operator. Instead, they
have to be specified within the operator find_local_deformable_model.

ScaleRMin and ScaleCMin can be relevant if you expect matches that are smaller than in the original image
Template. Then, if NumLevels is set to >auto’, the number of used pyramid levels may decrease.

The parameters AngleStep, ScaleRStep, and ScaleCStep can be determined automatically by setting their
values to "auto’. Generally, this should lead to good results.

For more information about how these parameters work, please refer to the operator
find_local_deformable_model.
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3.4.3.4 Specify which Pixels are Compared with the Model (MinContrast, Metric)

The parameter MinContrast lets you specify which contrast a point in a search image must at least have in order
to be compared with the model, whereas Metric lets you specify whether and how the polarity, i.e., the direction
of the contrast must be observed.

The parameters are similar to the corresponding parameters of shape-based matching that are described in sec-
tion 3.2.4.5 on page 62. The only difference is that for local deformable matching a further value for Met-
ric is available that allows to observe the polarity in sub-parts of the model. A sub-part is a set of model
points that are adjacent. For different calculations of the local deformable matching, the model is divided into
a set of sub-parts that have approximately the same size (see also section 3.5.3.5 on page 104). When set-
ting Metric to ’ignore_part_polarity’, the different sub-parts may have different polarities as long as the
polarities of the points within the individual sub-parts are the same. ’ignore_part_polarity’ is a trade-
off between ’ignore_global_polarity’, which does not work with locally changing polarities, and ’ig-
nore_local_polarity’, which requires a very fine structured inspection and thus slows down the search signif-
icantly.

3.4.3.5 Adjust Generic Parameters (GenParamName, GenParamValue)

Typically, there is no need to adjust the generic parameters that are set via GenParamName and GenParamValue.
But in rare cases, it might be helpful to adjust the splitting of the model into sub-parts, which are needed for
different calculations of the local deformable matching, or to suppress small connected components of the model
contours.

The size of the sub-parts is adjusted setting GenParamName to ’part_size’ and GenParamValue to ’small’,
’medium’, or ’big’. Small connected components of the model contours can be suppressed by setting Gen-
ParamName to ’min_size’. The corresponding numeric value that is specified in GenParamValue describes the
number of points a connected part of the object must at least contain to be considered for the following calcula-
tions. The effect corresponds to the suppression of small structures that can be applied for shape-based matching
within the parameter Contrast, which is described in section 3.2.4.1 on page 58.

3.4.3.6 Inspect and Modify the Local Deformable Model

If you want to visually inspect an already created deformable model, you can use
get_deformable_model_contours to get the XLD contours that represent the model in a specific pyra-
mid level. Note that the XLLD contour of the model is located at the origin of the image and thus a transformation
may be needed for a proper visualization (see section 2.5.2 on page 31).

To inspect the current parameter values of a model, you query them with get_deformable_model_params. This
may be necessary if during the creation of the model an automatic parameter selection was used or if the model
was created within another program, saved to file with write_deformable_model, and read from this file in the
current program with read_deformable_model. Additionally, you can query the coordinates of the origin of the
model using get_deformable_model_origin.

After the creation of the model and before you search the object in a search image, you can further modify the
model. In particular, you can apply set_deformable_model_origin to change its point of reference. But
similar to shape-based matching, when modifying the point of reference, the accuracy of the estimated position
may decrease (see section 3.2.6.6 on page 69). Therefore, if possible, the point of reference should not be
changed. Instead, a suitable ROI for the model creation should be selected right from the start (see section 2.1.2
on page 18).

3.4.4 Optimize the Search Process

The actual matching is applied with find_local_deformable_model. In the following, we show how to select
suitable parameters for it to adapt and optimize a matching task. In particular, we show how to
* restrict the search space to a region of interest (section 3.4.4.1),

e restrict the search space by restricting the range of orientation and scale via the parameters AngleStart,
AngleExtent, ScaleMin, and ScaleMax (section 3.4.4.2),
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* restrict the search space to a specific amount of allowed occlusions for the object, i.e., specify the visibility
of the object via the parameter MinScore (section 3.4.4.3),

* specify the used search heuristics, i.e., trade thoroughness versus speed by adjusting the parameter Greed-
iness (section 3.4.4.4),

« search for multiple instances of the model by adjusting the parameters NumMatches and MaxOverlap (sec-
tion 3.4.4.5),

e restrict the number of pyramid levels (NumLevels) for the search process (section 3.4.4.6),
* specify the types of iconic results the matching should return (ResultType, section 3.4.4.6), and

¢ adjust some additional (generic) parameters within GenParamName and GenParamValue (section 3.4.4.8).

3.4.4.1 Restrict the Search to a Region of Interest

The obvious way to restrict the search space and thus speed up the matching is to apply the operator
find_local_deformable_model not to the whole image but only to an ROI. The corresponding procedure is
explained in more detail for shape-based matching in section 3.2.7 on page 70 For local deformable matching you
simply have to use find_local_deformable_model.

3.4.4.2 Restrict the Range of Orientation and Scale (AngleStart, AngleExtent, Scale*Min,
Scalex*Max)

When calling find_local_deformable_model you can limit the orientation and scale ranges with the parameters
AngleStart, AngleExtent, ScaleMin, and ScaleMax. This is useful if you can restrict these ranges by other
information, which can, e.g., be obtained by suitable image processing operations.

3.4.4.3 Specify the Visibility of the Object (MinScore)

With the parameter MinScore you can specify how much of the model must be visible. A typical use of this
mechanism is to allow a certain degree of occlusion. The parameter is similar to the corresponding parameter for
shape-based matching that is described in more detail in section 3.2.6.2 on page 64.

3.4.4.4 Trade Thoroughness vs. Speed (Greediness)

With the parameter Greediness you can influence the search algorithm itself and thereby trade thoroughness
against speed, see section 2.4.3 on page 29.

3.4.4.5 Search for Multiple Instances of the Object (NumMatches, MaxOverlap)

All you have to do to search for more than one instance of the object is to set the parameter NumMatches to the
maximum number of instances you want to find. If you select the value 0, all matches are returned.

Locating more than one instance, the operator find_local_deformable_model returns the results for the indi-
vidual model instances concatenated in the output tuples (see also section 3.4.5.4 on page 100). Note that a search
for multiple objects is only slightly slower than a search for a single object.

A second parameter, Max0Overlap, lets you specify how much two matches may overlap (as a fraction). This
parameter is similar to the corresponding parameter of shape-based matching that is described in section 3.2.6.4
on page 66.

3.4.4.6 Restrict the Number of Pyramid Levels (NumLevels)

The parameter NumLevels, which you already specified when creating the model, allows you to use a different (in
most cases a more restrictive) value in the search process. By using the value 0 for NumLevels, the value specified
when creating the model is used.
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3.4.4.7 Specify the Iconic Objects Returned by the Matching (ResultType)

By default, a position and a score are returned for each match. If you additionally want to obtain some
iconic results, you can set the parameter ResultType to ’image_rectified’, ’vector_field’, and ’de-
formed_contours’. With ’image_rectified’ you get a rectified version of the part of the search image that
corresponds to the bounding box of the ROI that was used to create the model (RectifiedImage), with ’vec-
tor_field’ you get the vector field that describes the deformations of the matched model instance (Vector-
Field), and with *deformed_contours’ you get the contours of the deformed model instance (DeformedCon-—
tours). The individual result types are introduced in more detail in section 3.4.5.

3.4.4.8 Adjust Generic Parameters (GenParamName, GenParamValue)

Besides the parameters that correspond more or less to those used for shape-based matching, local deformable
matching allows to adjust some generic parameters that are set via GenParamName and GenParamValue. Typically,
there is no need to adjust them. But if, e.g., a low accuracy of the matching is sufficient, you can speed up the
matching by a reduction or deactivation of the subpixel precision or by changing the discretization steps for the
orientation or scale that were set during the creation of the model.

Additionally, you can adjust the expected “smoothness” of the deformation. In particular, if the deformations
vary locally, i.e., if the deformations are expected to be rather different within a small neighborhood, the value of
’deformation_smoothness’ may be set to a smaller value, whereas for an object with an expected “smooth”
transition between the deformations the parameter may be set to a higher value.

Furthermore, you can expand the border of the optionally returned rectified image (see section 3.4.4.7). By de-
fault, the section of the search image that is rectified corresponds to the bounding box of the ROI that was used
to create the model. If a larger section is needed, e.g., if neighboring parts that are visible in the search image are
needed as well for a further processing of the image, you can expand the border of the rectified image with the pa-
rameters ’expand_border’, ’expand_border_top’, ’expand_border_bottom’, ’expand_border_left’,
or ’expand_border_right’, respectively. If, e.g., in the example program only the letters “MVT” would
have been contained in the model, but the letters “ec” would have been needed as well, the parameter ’ex-
pand_border_right’ could have been set to 50 to expand the image section by 50 pixels. Note that the recti-
fication is reliable only for the image section that corresponds to the model ROI, as for the neighboring parts of
the search image an extrapolation is applied. Thus, the larger the expanded border is, the less accurate is the result
towards the image border.

For further information, please refer to the description of find_local_deformable_model in the Reference
Manual.

3.4.5 Use the Specific Results of Local Deformable Matching

The results of local deformable matching differ from those of the other matching approaches. Though it returns
also a position and a score, it does not return an orientation or even a scale. Instead, a set of iconic objects can be
returned that helps to inspect the deformations of the found object instance. Depending on the selected values of
ResultType, the following iconic objects are returned:

* RectifiedImage: the rectified part of the search image that corresponds to the bounding box of the ROI
that was used to create the model (section 3.4.5.1).

e VectorField: the vector field describing the deformations of the found model instance (section 3.4.5.2).

e DeformedContours: the contours of the deformed model instance (section 3.4.5.3).

Similar to shape-based matching, local deformable matching can return multiple instances of a model. How to use
these multiple instances is shown in section 3.5.5.1 on page 108.
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Figure 3.40: (left) search image; (right) rectified image part.

3.4.5.1 The Rectified Image

The first of the iconic objects that can be returned by the local deformable matching is the rectified part of the
search image that corresponds to the bounding box of the ROI that was used to create the model (see figure 3.40).

It can be used, e.g., as was introduced in the first example to show the difference between the rectified image and
the corresponding part of the reference image (see section 3.4.1 on page 91). Another use may be that the rectified
image is needed for a further image processing task. Note that if a larger section of the search image is needed for
the further processing, it is possible to expand the borders of ImageRectified as is described in section 3.4.4.8.

3.4.5.2 The Vector Field

Another iconic object that is returned by the matching is a vector field that can be used, e.g., to visualize the
deformations. For that, VectorField can be transformed into a grid as was shown in the first example (section ??
on page ??). Note that to directly display the vector field is not reasonable, as in contrast to a vector field that is
returned, e.g., by optical flow, no relative but absolute coordinates are returned. In particular, the vector field that
is returned, e.g., by optical_flow_mg describes the relative movement of the points from one image to another
image of the same size. The components of the vector field that can be queried with vector_field_to_real
contain for each point the relative movement in row and column direction. In contrast, the vector field that is
returned by local deformable matching describes the movement of points from the model, or more precisely from
the bounding box that surrounds the template image, to a search image that typically is larger than the model. Thus,
instead of the relative movement of each point, the vector field contains for each model point the corresponding
absolute coordinates of the search image.

Besides visualization purposes, the vector field can be used to get a rectification map that can be used for other
applications as well. If, e.g., the deformations of a model instance do not stem from a deformed object but from
significant camera distortions, you may use the returned vector field to compensate for the camera distortions in
other images. For that, the model either must be a synthetic model (see section 2.1.3 on page 20) or it must be
created from an image that was made with a camera without significant distortions. The vector field that is returned
by the matching in a search image that is made by the distorted camera can then be transformed into a map with
convert_map_type. This map can then be used to rectify other images that were made with the same camera.

3.4.5.3 The Deformed Contours

At last, the deformed contours can be returned. Similar to the model contours the DeformedContours can be
used for visualization purposes (see figure 3.41) or for a visual inspection of the difference between the model and
the found model instance. For the latter, you can either overlay the matching result with the model contours or
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Figure 3.41: (left) search image; (right) search image overlaid by deformed contours.

overlay the model with the deformed contours. Whereas the model contours by default are located at the origin of
the image and thus must be transformed for a proper visualization as described in section 2.5.3.1 on page 33, the
deformed contours are located already at the position of the match.

3.4.5.4 Deal with Multiple Matches

If multiple instances of the object are searched and found, the results are concatenated in tuples. For example,
Score, which is a single value for a single model instance, is now a tuple for which the number of elements
corresponds to the number of found model instances. The access of the value for a specific instance is similar to
the proceeding described in section 3.1.4.5 on page 51 for correlation-based matching.

The iconic output object DeformedContours is already returned as a tuple for a single model instance. For
multiple instances, the values are simply concatenated. To access them for a specific match, you must know the
number of elements returned for a single model instance. This can be obtained by calling count_obj for the
model contours that can be queried with get_deformable_model_contours after the model creation. If, e.g.,
the model consists of five contours, in the tuple returned for the deformed contours, the first five values belong to
the first instance, the next five values belong to the second instance, etc. An example for the access of the values
for each instance is described in more detail for calibrated perspective deformable matching in section 3.5.4.5 on
page 107.

3.5 Perspective Deformable Matching

Like shape-based matching, perspective deformable matching extracts contours and matches their shapes against
the shapes of previously created models. But in contrast to shape-based matching, also perspectively deformed
contours can be found. For the perspective deformable matching, an uncalibrated as well as a calibrated version is
provided. The following sections show

* a first example for a perspective deformable matching (section 3.5.1),

* how to select an appropriate ROI to derive the template image from the reference image (section 3.5.2 on
page 102),

* how to create a suitable model (section 3.5.3 on page 103),
* how to optimize the search (section 3.5.4 on page 105), and

* how to deal with the results that are specific for the perspective deformable matching (section 3.5.5 on page
108).
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3.5.1 A First Example

In this section we give a quick overview of the matching process with perspective deformable matching. To fol-
low the example actively, start the HDevelop example program %HALCONEXAMPLESY\hdevelop\Applications\
Traffic-Monitoring\detect_road_signs.hdev, which locates road signs independently from their direc-
tion. Actually, the program searches an attention sign and a dead end road sign. In the following, we show the
proceeding exemplarily for the attention sign.

Step 1:  Select the object in the reference image

First, the colored reference image is read and a channel that clearly shows the attention sign (see figure 3.42, left)
is accessed with access_channel. As the attention sign in the search images is expected to be much smaller than
in the reference image, the reference image is scaled with zoom_image_factor to better fit the expected size (see
figure 3.42, middle). The creation of perspective deformable models is based on XLD contours, which is similar to
shape-based matching. Thus, inspect_shape_model (see section 3.2.5.1 on page 63) can be used to get suitable
values for the parameters NumLevels and Contrast, which are needed for the creation of shape models as well
as for the creation of perspective deformable models. The returned representation of a shape model with multiple
pyramid levels can be used to visually check a potential model (see figure 3.42, right).

read_image (ImageAttentionSign, 'road_signs/attention_road_sign')
access_channel (ImageAttentionSign, Image, Channel[0])
zoom_image_factor (Image, ImageZoomed, 0.1, 0.1, 'weighted')
inspect_shape_model (ImageZoomed, ModelImages, ModelRegions, 3, 20)

original number of pixels ] ‘original number of pixels / 10

Figure 3.42: From left to right: specific channel of colored reference image, scaled image, inspection of the shape
model.

Step 2:  Create the model

How to obtain a proper template image from a reference image is described in section 2.1 on page 17. In this case,
a further reduction to a more restricted ROI is not needed. The model is obtained from the template image with
create_planar_uncalib_deformable_model.

create_planar_uncalib_deformable_model (ImageZoomed, 3, [1, [1, 0.1, \
ScaleRMin[0], [1, 0.05, \
ScaleCMin[0], [], 0.5, 'mone', \
'use_polarity', 'auto', 'auto', [1, \
[1, ModelID)

Step 3:  Find the object again

To speed up the matching, the search space is restricted first to a rectangular region and then, within this region,
to an ROI consisting of a set of blobs (see figure 3.43, left). This set of blobs is obtained by the procedure
determine_area_of_interest, which exploits the available color information and applies a blob analysis.

gen_rectanglel (Rectanglel, 28, 71, 69, 97)

for Index := 1 to 16 by 1
read_image (Image, 'road_signs/street_' + Index$'.02')
determine_area_of_interest (Image, Rectangle, AreaOfInterest)
reduce_domain (Image, AreaOfInterest, ImageReduced)
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Figure 3.43: (left) ROI derived from the color image; (right) found match for the model of the attention sign.

Within  the  resulting ROI, the actual matching is applied using the  operator
find_planar_uncalib_deformable_model. Note that the search is applied in the same image channel
that was already used for the model creation.

for Index2 := 0 to |Models| - 1 by 1

access_channel (ImageReduced, ImageChannel, Channel[Index2])

find_planar_uncalib_deformable_model (ImageChannel, Models[Index2], \
0, 0, ScaleRMin[Index2], \
ScaleRMax[Index2], \
ScaleCMin[Index2], \
ScaleCMax[Index2], 0.85, 1, \
0, 2, 0.4, [1, [J, HomMat2D, \
Score)

The result of the matching for each found model instance is a 2D projective transformation matrix (homography)
and a score that represents the quality of the matching. Using the homographies, the result is visualized for the
successful matches. In particular, the contours of the model are queried and projected into the search image as
described in more detail in section 2.5.4 on page 41 (see figure 3.43, right).

if (|HomMat2D|)
get_deformable_model_contours (ModelContours, Models[Index2], 1)
projective_trans_contour_xl1d (ModelContours, ContoursProjTrans, \
HomMat2D)
endif
endfor
endfor

The following sections go deeper into the details of the individual steps of a perspective deformable matching and
the parameters that have to be adjusted.

3.5.2 Select the Model ROI

As a first step of the perspective deformable matching, the region of interest that specifies the template image must
be selected as described, e.g., in section 2.1.1 on page 17. This region can have an arbitrary shape, i.e., it can also
contain holes or consist of several parts that are not connected. Thus, it is possible to create an ROI that contains
only “robust” parts of the object. The ROI must be selected so that it contains all prominent structures of the object
and also some pixels outside of them, as their immediate surroundings (neighborhood) are needed to obtain the
model. Furthermore, you can speed up the later search using a subsampling (see section 3.5.3.2 on page 104). For
that, the ROI should not be too “thin”, because otherwise it vanishes at higher pyramid levels! As a rule of thumb,
you are on the safe side if an ROI is 2V Levels—1 pixels wide. That is, a width of 8 pixels allows to use 4 pyramid
levels. After having selected a suitable ROI, the reduced image is used as template image for the creation of the
model.
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3.5.3 Create a Suitable Perspective Deformable Model

Having derived the template image from the reference image, the perspective deformable model can be created.
Note that the perspective deformable matching consists of different methods to find the trained objects in images.
Depending on the selected method, one of the following operators is used to create the model:

e create_planar_uncalib_deformable_model creates a model for an uncalibrated perspective de-
formable matching that uses a template image to derive the model.

* create_planar_uncalib_deformable_model_x1ld creates a model for an uncalibrated perspec-
tive deformable matching that uses XLD contours to derive the model. Note that after a first
match, it is strongly recommended to determine the polarity information for the model with
set_planar_uncalib_deformable_model_metric (see section 2.1.3.2 on page 22 for details).

* create_planar_calib_deformable_model creates a model for a calibrated perspective deformable
matching that uses a template image to derive the model.

* create_planar_calib_deformable_model_x1d creates a model for a calibrated perspective de-
formable matching that uses XLD contours to derive the model. Note that after a first
match, it is strongly recommended to determine the polarity information for the model with
set_planar_calib_deformable_model_metric (see section 2.1.3.2 on page 22 for details).

Here, we will take a closer look at how to adjust the corresponding parameters. In particular, you can

* specify which pixels are part of the model by adjusting the parameter Contrast (section 3.5.3.1),

* speed up the search by using a subsampling, i.e., by adjusting the parameter NumLevels, and by reducing
the number of model points, i.e., by adjusting the parameter Optimization (section 3.5.3.2),

* specify which pixels are compared with the model in the later search by adjusting the parameters MinCon-
trast and Metric (section 3.5.3.4),

¢ adjust some additional (generic) parameters within GenParamName and GenParamValue, which is needed
only in very rare cases (section 3.5.3.5), and

* specify the camera parameters and the reference pose that are needed only for the calibrated matching (Cam-
Param and ReferencePose, see section 3.6.3.3 on page 113).

Note that when adjusting the parameters you can also let HALCON assist you:

» Use automatic parameter suggestion:

You can let HALCON suggest suitable values for many of these parameters by either setting the correspond-
ing parameters to the value ’auto’ within the operator that is used to create the model or by applying
determine_deformable_model_params to automatically determine values for a perspective deformable
model from a template image and then decide individually if you use the suggested values for the creation
of the model. Note that both approaches return only approximately the same values and the values that are
returned by the operators that are used to create the model are more precise.

* Apply inspect_shape_model:

As the perspective deformable matching uses XLD contours to build the model, which is similar to shape-
based matching, you can use inspect_shape_model to try different values for the parameters NumLevels
and Contrast. The operator returns the resulting representation of a shape model with multiple pyramid
levels and thus allows you to visually check if the object of interest is represented adequately by the model.
If several combinations of parameter values do not lead to a satisfying representation of the object, maybe
the template image, i.e., the model’s ROI was not selected properly. How to select a suitable ROl is described
in section 2.1 on page 17.

Note that after the creation of the model, the model can still be modified. In section 3.5.3.7 on page 105 the
possibilities for the inspection and modification of an already created model are shown.
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3.5.3.1 Specify Pixels that are Part of the Model (Contrast)

For the model those pixels are selected whose contrast, i.e., gray value difference to neighboring pixels, exceeds a
threshold specified by the parameter Contrast when calling create_planar_uncalib_deformable_model or
create_planar_calib_deformable_model. The parameter Contrast is similar to the corresponding parame-
ter of shape-based matching that is described in more detail in section 3.2.4.1 on page 58 The only difference is that
here small structures are not suppressed within Contrast but with the separate generic parameter min_size’
that is set via GenParamName and GenParamValue as described in section 3.5.3.5.

3.5.3.2 Speed Up the Search using Subsampling and Point Reduction (NumLevels, Optimization)

To speed up the matching process, subsampling can be used (see also section 2.4.2 on page 28). There, an image
pyramid is created, consisting of the original, full-sized image and a set of downsampled images. The model is
then created and searched on the different pyramid levels.

You can specify how many pyramid levels are used via the parameter NumLevels. A further reduction of model
points can be enforced via the parameter Optimization. This may be useful to speed up the matching in the case
of particularly large models. The functional principle of both parameters is similar to the parameters that are used
for shape-based matching (see section 3.2.4.2 on page 59).

3.5.3.3 Allow a Range of Orientation (AngleExtent, AngleStart, AngleStep) and Scale (Scale*Min,
Scale#*Max, Scale*Step)

Note that AngleStart, AngleExtent, ScaleRMax, and ScaleCMax are not used by this operator. Instead, they
have to be specified within the operator find_planar_uncalib_deformable_model.

ScaleRMin and ScaleCMin can be relevant if you expect matches that are smaller than in the original image
Template. Then, if NumLevels is set to >auto’, the number of used pyramid levels may decrease.

The parameters AngleStep, ScaleRStep, and ScaleCStep can be determined automatically by setting their
values to "auto’. Generally, this should lead to good results.

For more information about how these parameters work, please refer to the operator
find_planar_uncalib_deformable_model.

3.5.3.4 Specify which Pixels are Compared with the Model (MinContrast, Metric)

The parameter MinContrast lets you specify which contrast a point in a search image must at least have in order
to be compared with the model, whereas Metric lets you specify whether and how the polarity, i.e., the direction
of the contrast must be observed.

The parameters are similar to the corresponding parameters of shape-based matching that are described in sec-
tion 3.2.4.5 on page 62. The only difference is that for perspective deformable matching a further value for Met-
ric is available that allows to observe the polarity in sub-parts of the model. A sub-part is a set of model points
that are adjacent. For different calculations of the perspective deformable matching, the model is divided into a
set of sub-parts that have approximately the same size (see also section 3.5.3.5). When setting Metric to *ig-
nore_part_polarity’, the different sub-parts may have different polarities as long as the polarities of the points
within the individual sub-parts are the same. This is helpful, e.g., if due to the movement in the 3D space different
reflections on the object are expected. As these reflections typically are not too small, ’ignore_part_polarity’
is a trade-off between ’ignore_global_polarity’, which does not work with locally changing polarities, and
’ignore_local_polarity’, which requires a very fine structured inspection and thus slows down the search
significantly.

3.5.3.5 Adjust Generic Parameters (GenParamName, GenParamValue)

Typically, there is no need to adjust the generic parameters that are set via GenParamName and GenParamValue.
But in rare cases, it might be helpful to adjust the splitting of the model into sub-parts, which are needed for
different calculations of the perspective deformable matching, or to suppress small connected components of the
model contours.
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The size of the sub-parts is adjusted setting GenParamName to ’part_size’ and GenParamValue to ’small’,
’medium’, or ’big’.

Small connected components of the model contours can be suppressed by setting GenParamName to *min_size’.
The corresponding numeric value that is specified in GenParamValue describes the number of points a connected
part of the object must at least contain to be considered for the following calculations. The effect corresponds to
the suppression of small structures that can be applied for shape-based matching within the parameter Contrast,
which is described in section 3.2.4.1 on page 58.

3.5.3.6 Specify the Camera Parameters and the Reference Pose (CamParam, ReferencePose)

For the calibrated matching, the internal camera parameters (CamParam) and a reference pose (ReferencePose)
have to be specified. We recommend to obtain both using a camera calibration as described in the Solution Guide
III-C, section 3.2 on page 61. Other approaches for determining the pose of the object plane comprise a manual
measurement of the extents of the model, which is rather intricate and often inaccurate, stereo vision (see Solution
Guide III-C, chapter 5 on page 117), or 3D laser triangulation, e.g., using sheet of light (see Solution Guide III-C,
chapter 6 on page 147).

3.5.3.7 Inspect and Modify the Perspective Deformable Model

If you want to visually inspect an already created deformable model, you can use
get_deformable_model_contours to get the XLD contours that represent the model in a specific pyra-
mid level. In case that the model was generated by create_planar_calib_deformable_model_x1d, the
contours by default are returned in the world coordinate system in metric units. Here, the contours must be
transformed by the returned pose for visualizing a match. In all other cases, the contours of the model by default
are returned in the image coordinate system in pixel units. For the calibrated matching you can specify the
coordinate system in which the contours are returned when calling get_deformable_model_contours with the
operator set_deformable_model_param.

To inspect the current parameter values of a model, you query them with get_deformable_model_params. This
may be necessary if during the creation of the model an automatic parameter selection was used or if the model
was created within another program, saved to file with write_deformable_model, and read from this file in the
current program with read_deformable_model. Additionally, you can query the coordinates of the origin of the
model using get_deformable_model_origin.

After the creation of the model and before you search the object in a search image, you can further modify the
model. In particular, you can apply set_deformable_model_origin to change its point of reference and thus,
in case of a calibrated matching, also its reference pose. But similar to shape-based matching, when modifying the
point of reference, the accuracy of the estimated position may decrease (see section 3.2.6.6 on page 69). Therefore,
if possible, the point of reference should not be changed. Instead, a suitable ROI for the model creation should
be selected right from the start (see section 2.1.2 on page 18).

For the case that you nevertheless need to modify the point of reference, e.g., if the origin should be placed on a
specific part of the object, e.g., a corner of the object or a drill hole, and you want to apply a calibrated matching,
we here shortly describe the relation between the reference pose, the model pose, and an offset that is manually
applied to the point of reference. In particular, when creating the template model for a calibrated matching, the
reference pose, which was obtained, e.g., by a camera calibration, is automatically modified by an offset so that
its origin corresponds to the projection of the center of gravity of a rectified version of the template image (i.e.,
the ROI) onto the reference plane and the axes of the obtained model coordinate system are parallel to those of
the initial reference pose (see figure 3.44). If you use set_deformable_model_origin to additionally apply an
offset to the origin of the thus obtained model pose, the offset is set in image coordinates for the internally rectified
template image. To determine the necessary number of pixels for the row and column direction it is convenient
to query the rectified contour of the object from the template model with get_deformable_model_contours.
After setting a manual offset, the obtained image point is automatically projected to the object plane as origin of
the modified pose and the pose is adapted accordingly for all following operations.

3.5.4 Optimize the Search Process

The actual matching is applied by one of the following operators:
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Figure 3.44: Internal and manual offset for the calibrated perspective matching: the offset from the reference pose

to the model pose is calculated automatically from the reference pose, the internal camera parame-
ters, and the template image. An additional offset can be applied manually and is defined in image
coordinates.

e find_planar_uncalib_deformable_model searches for the best matches of an uncalibrated perspective
deformable model. It returns a 2D projective transformation matrix (homography) and the score describing
the quality of the match.

e find_planar_calib_deformable_model searches for the best matches of a calibrated perspective de-
formable model. It returns the 3D pose of the object, the six mean square deviations, respectively the 36
covariances of the pose parameters, and the score describing the quality of the match.

In the following, we show how to select suitable parameters for these operators to adapt and optimize a matching
task. In particular, we show how to

* restrict the search space to a region of interest (section 3.5.4.1),

* restrict the search space by restricting the range of orientation and scale via the parameters AngleStart,
AngleExtent, ScaleMin, and ScaleMax (section 3.5.4.2),

* restrict the search space to a specific amount of allowed occlusions for the object, i.e., specify the visibility
of the object via the parameter MinScore (section 3.5.4.3),

 specify the used search heuristics, i.e., trade thoroughness versus speed by adjusting the parameter Greed-
iness (section 3.5.4.4),

 search for multiple instances of the model by adjusting the parameters NumMatches and Max0Overlap (sec-
tion 3.5.4.5),

* restrict the number of pyramid levels (NumLevels) for the search process (section 3.5.4.6), and

¢ adjust some additional (generic) parameters within GenParamName and GenParamValue (section 3.5.4.7 on
page 108).
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3.5.4.1 Restrict the Search to a Region of Interest

The obvious way to restrict the search space and thus speed up the matching is to apply the oper-
ator find_planar_uncalib_deformable_model or find_planar_calib_deformable_model not to the
whole image but only to an ROIL The corresponding procedure is explained in more detail for shape-
based matching in section 3.2.7 on page 70. For perspective deformable matching you simply have to use
find_planar_uncalib_deformable_model or find_planar_calib_deformable_model, respectively.

3.5.4.2 Restrict the Range of Orientation and Scale (AngleStart, AngleExtent, Scale*Min,
Scale*Max)

When calling find_planar_uncalib_deformable_model or find_planar_calib_deformable_model you
can limit the orientation and scale ranges with the parameters AngleStart, AngleExtent, ScaleMin, and Scale-
Max. This is useful if you can restrict these ranges by other information, which can, e.g., be obtained by suitable
image processing operations.

3.5.4.3 Specify the Visibility of the Object (MinScore)

With the parameter MinScore you can specify how much of the model must be visible. A typical use of this
mechanism is to allow a certain degree of occlusion. The parameter is similar to the corresponding parameter for
shape-based matching that is described in more detail in section 3.2.6.2 on page 64.

3.5.4.4 Trade Thoroughness vs. Speed (Greediness)

With the parameter Greediness you can influence the search algorithm itself and thereby trade thoroughness
against speed section 2.4.3 on page 29.

3.5.4.5 Search for Multiple Instances of the Object (NumMatches, MaxOverlap)

All you have to do to search for more than one instance of the object is to set the parameter NumMatches to the
maximum number of instances you want to find. If you select the value 0, all matches are returned.

Locating more than one instance, the operators find_planar_uncalib_deformable_model and
find_planar_calib_deformable_model return the results for the individual model instances concate-
nated in the output tuples. That is, the Score, which is a single value for a single model instance, is now returned
as a tuple for which the number of elements corresponds to the number of found model instances. For the results
that are already returned as tuples for a single model instance, the number of elements multiplies by the number
of found instances. These results comprise the projective transformation matrix (HomMat2D) for the uncalibrated
matching or the 3D pose (Pose) and the standard deviations or covariances (CovPose) for the calibrated matching.
How to access the values for a specific match is shown in section 3.5.5.1. Note that a search for multiple objects is
only slightly slower than a search for a single object.

A second parameter, MaxOverlap, lets you specify how much two matches may overlap (as a fraction). This
parameter is similar to the corresponding parameter of shape-based matching that is described in section 3.2.6.4
on page 66.

3.5.4.6 Restrict the Number of Pyramid Levels (NunLevels)

The parameter NumLevels, which you already specified when creating the model, allows you to use a different (in
most cases a more restrictive) value in the search process. By using the value 0 for NumLevels, the value specified
when creating the model is used.

Optionally, NumLevels can contain a second value, so that you can specify not only the highest but also the lowest
pyramid level used for the search. If the search is aborted on a pyramid level that is higher than the first pyramid
level, which corresponds to the original, full-sized image, the search becomes faster. On the other hand, the search
is then also less robust and less accurate. If objects should be found also in images of poor quality, e.g., if the object
is defocused or noisy, you can activate the increased tolerance mode by specifying the second value negatively.
Then, the matches on the lowest pyramid level that still provides matches are returned.
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3.5.4.7 Adjust Generic Parameters (GenParamName, GenParamValue)

Besides the parameters that correspond more or less to those used for shape-based matching, perspective de-
formable matching allows to adjust some generic parameters that are set via GenParamName and GenParamValue.
Typically, there is not need to adjust them. But if, e.g., a low accuracy of the matching is sufficient, you can speed
up the matching by a reduction or deactivation of the subpixel precision or by changing the discretization steps
for the orientation or scale that were set during the creation of the model. To avoid false positive matches, you
can also restrict the distortions of the angles and scales. For further information, please refer to the description of
find_planar_uncalib_deformable_model in the Reference Manual.

3.5.5 Use the Specific Results of Perspective Deformable Matching

The perspective deformable matching returns for the uncalibrated case a 2D projective transformation matrix (Hom-
Mat2D), for the calibrated case a 3D pose (Pose) and either the standard deviations or the covariances (CovPose),
and for both cases a score (Score) that evaluates the quality of the returned object location. The 2D projective
transformation matrix and the 3D pose can be used, e.g., to transform a structure of the reference image into the
search image as described in section 2.5.4 on page 41 for the 2D projective transformation matrix and in sec-
tion 2.5.5 on page 43 for the 3D pose. Similar to the shape-based matching, perspective deformable matching can
return multiple instances of a model. How to use these multiple instances is shown in section 3.5.5.1.

3.5.5.1 Deal with Multiple Matches

If multiple instances of the object are searched and found, the results are concatenated in tuples. In particular,
Score, which is a single value for a single model instance, is now a tuple for which the number of elements
corresponds to the number of found model instances. The access of the value for a specific instance is similar to
the proceeding described in section 3.1.4.5 on page 51 for correlation-based matching.

The parameters HomMat2D, Pose, and CovPose are already returned as tuples for a single model instance. For
multiple instances, the values are simply concatenated. To access them for a specific match, you must know the
number of elements returned for a single model instance, which is nine for a single projective transformation ma-
trix, seven for a single 3D pose, and either six (’default’) or 36 elements (generic parameter ’ cov_pose_mode’
set to ’covariances’) for the single instance’s standard deviations or covariances, respectively. Then, e.g., in
the tuple containing the 3D poses that are returned by a calibrated matching, the first seven values belong to the
first instance, the next seven values belong to the second instance, etc. An example for the access of the values for
each instance is the HDevelop example program %HALCONEXAMPLESY,\hdevelop\Applications\Position-
Recognition-3D\locate_engine_parts.hdev, which locates the engine parts shown in figure 3.45. In the
example, the 3D poses of the individual model instances are accessed by selecting specific subsets of the tuples
using tuple_select_range.

find_planar_calib_deformable_model (Image, ModelID, rad(0), rad(360), 1, \
1, 1, 1, 0.65, 0, 0, 3, 0.75, [1, \
[1, Pose, CovPose, Score)
for Indexl := 0 to |Score| - 1 by 1
tuple_select_range (Pose, Indexl * 7, ((Indexl + 1) * 7) - 1, \
PoseSelected)
pose_to_hom_mat3d (PoseSelected, HomMat3D)
endfor

3.6 Descriptor-Based Matching

Similar to the perspective deformable matching, the descriptor-based matching is able to find objects even if they
are perspectively deformed. Again, the matching can be applied either for a calibrated camera or for an uncalibrated
camera. In contrast to the perspective deformable matching, the template is not built by the shapes of contours but
by a set of so-called interest points. These points are first extracted by a detector and then are described, i.e.,
classified according to their location and their local gray value neighborhood, by a descriptor.

The following sections show
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5 models found in 206.7 ms

Click 'Run' to continue

Figure 3.45: 3D poses of engine parts obtained by a calibrated perspective deformable matching.

* a first example for a descriptor-based matching (section 3.6.1),

* how to select an appropriate ROI to derive the template image from the reference image (section 3.6.2 on
page 111),

* how to create a suitable model (section 3.6.3 on page 111),
* how to optimize the search (section 3.6.4 on page 113), and

* how to deal with the results that are specific for descriptor-based matching (section 3.6.5 on page 116).

3.6.1 A First Example

In this section we give a quick overview of the matching process with (calibrated) descriptor-based matching.
To follow the example actively, start the HDevelop program %HALCONEXAMPLESY\hdevelop\Applications\
Object-Recognition-2D\locate_cookie_box.hdev, which locates a cookie box label that is aligned in dif-
ferent directions.

Step 1:  Select the object in the reference image

First, the reference image is read and the image is reduced to a rectangular ROI. That is, a template image is derived
that contains only the label of one specific side of a cookie box.

read_image (Image, 'packaging/cookie_box_01")
gen_rectanglel (Rectangle, 224, 115, 406, 540)
reduce_domain (Image, Rectangle, ImageReduced)

As a calibrated matching is performed, the camera parameters and the reference pose of the label relative to the
camera are needed. For a precise matching, these should be obtained, e.g., by a camera calibration as described in
the Solution Guide III-C, section 3.2 on page 61. In the example, the pose is obtained by corresponding points, in
particular by the image coordinates and the estimated world coordinates of the corner points of the rectangle from
which the ROI was created.

Step 2:  Create the model

The camera parameters and the reference pose are input to create_calib_descriptor_model, which is applied
to create the calibrated descriptor model. Within the operator, the detector is selected and parameters for the
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detector as well as for the descriptor are specified. In this case, the parameters for the detector are specified with
[1, i.e., the default values are selected. To be able to reuse the created descriptor model, it is stored to file with

write_descriptor_file.

create_calib_descriptor_model (ImageReduced, CamParam, Pose, \
'harris_binomial', [], [1, ['depth', \
'number_ferns', 'patch_size', \
'min_scale', 'max_scale']l, [11, 30, 17, \
0.4, 1.2], 42, ModelID)

write_descriptor_model (ModelID, 'cookie_box_model.dsm')

Step 3:  Find the object again

find_calib_descriptor_model now locates the cookie box label in the search images. The returned 3D poses
describe the relation between the world coordinates of the model and the world coordinates of the found matches.

Figure 3.46 shows a search image with the visualized result.

Box label found in 95.16 ms

Click 'Run' to continue

Figure 3.46: 3D pose of cookie box label obtained by calibrated descriptor-based matching.

for Index := 1 to 10 by 1
read_image (Image, 'packaging/cookie_box_' + Index$'.02")
find_calib_descriptor_model (Image, ModelID, [1, [1, [1, [, 0.25, 1, \
CamParam, 'mum_points', Pose, Score)

endfor

Step 4:  Visualize the match

The result is visualized by different means.  First, the interest points of the found model instance
are queried with get_descriptor_model_points and can be immediately displayed as crosses using
gen_cross_contour_xld.

get_descriptor_model_points (ModellID, 'search', O, Row, Col)
gen_cross_contour_x1d (Crossl, Row, Col, 6, 0.785398)

Then, the 3D coordinate system of the 3D pose is visualized by the procedure disp_3d_coord_system.

disp_3d_coord_system (WindowHandle, CamParam, Pose, 0.07)
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Finally, the rectangle that presents the outline of the cookie box label is displayed. For that, the rectangle must
pass through different transformation steps. In particular, a transformation from the reference image to the world
coordinate system (WCS) is followed by a 3D affine transformation within the WCS, which is followed by a
transformation from the WCS to the search image.

As regions in HALCON cannot be transformed by a 3D transformation, the corner points of the rectangle must
be transformed instead. Here, the world coordinates of the rectangle’s corner points are obtained with im-
age_points_to_world_plane.

image_points_to_world_plane (CamParam, Pose, RowsRoi, ColumnsRoi, 'm', \
XOuterBox, YOuterBox)

To apply the following 3D affine transformation with affine_trans_point_3d, the 3D pose that was returned
by the matching must be converted into a 3D homogeneous transformation matrix using pose_to_hom_mat3d.

pose_to_hom_mat3d (Pose, HomMat3D)
affine_trans_point_3d (HomMat3D, XOuterBox, YOuterBox, [0, O, O, 0], \
XTrans, YTrans, ZTrans)

The 3D coordinates obtained by the 3D affine transformation are then projected with project_3d_point into the
search image, so that the rectangle can be reconstructed and displayed.

project_3d_point (XTrans, YTrans, ZTrans, CamParam, RowTrans, \
ColTrans)

gen_contour_polygon_xld (Contour, RowTrans, ColTrans)

close_contours_x1d (Contour, Contour)

dev_display (Contour)

The following sections go deeper into the details of the individual steps of a descriptor-based matching and the
parameters that have to be adjusted.

3.6.2 Select the Model ROI

As a first step of the descriptor-based matching, the region of interest that specifies the template image must be
selected as described, e.g., in section 2.1.1 on page 17. This region can have an arbitrary shape, i.e., it can also
contain holes or consist of several parts that are not connected. Thus, it is possible to create an ROI that contains
only “robust” parts of the object. The ROI must be selected so that potentially important interest points are not
directly at the border of the region, as the immediate surroundings (neighborhood) of the interest points are needed
to obtain the model. Additionally, the part of the object that is visible in the region of interest needs to be planar.
After having selected a suitable ROI, the reduced image is used as template image for the creation of the model.

3.6.3 Create a Suitable Descriptor Model

Having derived the template image from the reference image, the descriptor model can be created using

e create_uncalib_descriptor_model for an uncalibrated descriptor-based matching or

* create_calib_descriptor_model for a calibrated descriptor-based matching.

Except for the camera parameters and the reference pose, which are needed only for the calibrated case, the
parameters that have to be adjusted are the same for both operators. Here, we will take a closer look at how to
adjust them. In particular, we show how to

* select and adjust the detector (section 3.6.3.1),
¢ adjust the descriptor (section 3.6.3.2), and

 specify the camera parameters and the reference pose that are needed for the calibrated matching (sec-
tion 3.6.3.3 on page 113).

Note that after the creation of the model, the model can still be modified. In section 3.6.3.4 on page 113 the
possibilities for the inspection and modification of an already created model are shown.
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3.6.3.1 Select and Adjust the Detector (DetectorType, DetectorParamName, DetectorParamValue)

The interest points that build the model are extracted from the image by the so-called detector. The type of
detector is selected via the parameter DetectorType. Available types are ’lepetit’, ’harris’, and ’har-
ris_binomial’, which correspond to the HALCON point operators points_lepetit, points_harris, and
points_harris_binomial. ’lepetit’ can be used for a very fast extraction of significant points, but the ob-
tained points are not as robust as those obtained with *harris’. Especially, if a template or search image is very
dark or has got a low contrast, *lepetit’ is not recommended. ’harris_binomial’ is a good compromise
between ’lepetit’ and *harris’, because it is faster than *harris’ and more robust than ’lepetit’.

For each detector type a set of generic parameters is available that can be adjusted with the parameters Detector-
ParamName and DetectorParamValue. The first one is used to specify the names of the generic parameters and
the second one is used to specify the corresponding values. We recommend to apply tests with the selected point op-
erator before creating the model. That is, you apply the corresponding point operator to the template image and vi-
sualize the returned points using, e.g., gen_cross_contour_x1d. For a good result, about 50 to 450 points should
be uniformly distributed within the template image. If you have found the appropriate parameter setting for the
selected point operator, you can set these parameters also for the model in create_calib_descriptor_model or
create_uncalib_descriptor_model, respectively. Note that in most cases the default values of the detectors
(DetectorParamName and DetectorParamValue set to []) are sufficient.

3.6.3.2 Adjust the Descriptor (DescriptorParamName, DescriptorParamValue)

The currently implemented descriptor uses randomized ferns to classify the extracted points, i.e., to build charac-
teristic descriptions of the location and the local gray value neighborhood for the interest points.

The descriptor can be adjusted with the parameters DescriptorParamName and DescriptorParamValue. The
first one is used to specify the names of the generic parameters that have to be adjusted and the second one is used
to specify the corresponding values.

The parameters can be divided into parameters that control the size of the descriptor and thus allow to control the
detection robustness, speed, and memory consumption, and in parameters that control the simulation, especially
the spatial range in which the model views are trained. The size of the descriptor is controlled by the following
parameters:

e ’depth’ specifies the depth of the classification fern. Interest points can better be discriminated when
selecting a higher depth. On the other hand, a higher depth leads to an increasing runtime.

* ’number_ferns’ specifies the number of used fern structures. Using many fern structures leads to a better
robustness but also to an increasing runtime.

* ’patch_size’ specifies the side length of the quadratic neighborhood that is used to describe the individual
interest point. Again, a too large value can disadvantageously influence the runtime.

The selection of values for the depth and the number of ferns depends on your specific requirements. If a fast
online matching is required, few ferns with a large depth are recommended. If a robust matching result is
needed, many ferns are needed and a large depth may additionally increase the robustness, although it might also
significantly increase the runtime of the matching. If the memory consumption is critical, many ferns with a small
depth are recommended. For many applications, a trade-off between the different requirements will be needed.

The simulation, i.e., the training of the model is controlled by the following parameters:
e ’£ilt’ is used to switch on’ or *off’ the projective transformations during the simulation phase, which
leads either to an enhanced robustness of the model or to a speed-up of the training.
* ’min_rot’ and ’max_rot’ define the range for the angle of rotation around the normal vector of the model.
* 'min_scale’ and ’max_scale’ define the scale range of the model.
The restriction to small ranges for the angle of rotation and the scale can be used to speed up the training

significantly. But note that during the later applied matching the model can be found only if its angle and scale
is within the trained scope. Note further that the training is faster for small images. Thus, you can speed up the
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training by selecting a small reference image and small template images and setting *tilt’ to ’off’. Note also
that the reference image and the search image should have the same size.

An example for the restriction of the orientation and scale of the model is given in the HDe-
velop example program  HALCONEXAMPLES)\hdevelop\Applications\Object-Recognition-2D\
detect_brochure_pages.hdev that creates an uncalibrated descriptor model for the matching of differ-
ent brochure pages. There, the orientation is restricted to an angle range of +/- 90° (*’default’ is +/- 180°)
and the scale range is changed to a scaling factor between 0.2 and 1.1 (*default’ is between 0.5 and 1.4).

create_uncalib_descriptor_model (ImageReduced, 'harris_binomial', [], \
[1, ['min_rot', 'max_rot', \
'min_scale', 'max_scale']l, [-90, 90, \
0.2, 1.1], 42, ModellD)

3.6.3.3 Specify the Camera Parameters and the Reference Pose (CamParam, ReferencePose)

For a calibrated matching, additionally the camera parameters (CamParam) and a reference pose (ReferencePose)
have to be specified. We recommend to obtain both using a camera calibration as described in the Solution Guide
III-C, section 3.2 on page 61. Other approaches for determining the pose of the object plane comprise a manual
measurement of the extents of the model, which is rather intricate and often inaccurate, stereo vision (see Solution
Guide III-C, chapter 5 on page 117), or 3D laser triangulation, e.g., using sheet of light (see Solution Guide III-C,
chapter 6 on page 147).

3.6.3.4 Inspect and Modify the Descriptor Model

If you want to visually inspect an already created model, you can get the coordinates of the interest points that are
contained in it using get_descriptor_model_points with Set set to model’.

get_descriptor_model_points (ModelID, 'model', 'all', Row_D, Col_D)

To inspect the current parameter values of a model, you query them with get_descriptor_model_params. This
may be necessary if during the creation of the model an automatic parameter selection was used or if the model
was created within another program, saved to file with write_descriptor_model, and read from this file in the
current program with read_descriptor_model. Additionally, you can query the coordinates of the origin of the
model using get_descriptor_model_origin.

After the creation of the model and before you search the object in a search image, you can further modify the
model. In particular, you can apply set_descriptor_model_origin to change its origin. But note that this is
not recommended because the accuracy of the matching result may decrease, which is shown in more detail for
shape-based matching in section 3.2.6.6 on page 69. For the case that you nevertheless need to modify the point of
reference and you want to apply a calibrated matching, we refer to the corresponding description for perspective
deformable matching in section 3.5.3.7 on page 105. There, the relation between the reference pose, the model
pose, and an offset that is manually applied to the point of reference is introduced.

Note that after the matching, you can use get_descriptor_model_points also to query the interest points of
a specific match. Then, Set must be set to ’search’ instead of *model’. Here, the interest points of the first
found model instance (index 0) are queried.

get_descriptor_model_points (ModelIDs[Index2], 'search', 0, Row, Col)

Additionally, after the matching, get_descriptor_model_results can be used to query selected numerical
results that were accumulated during the search like the scores for the correspondences between the individual
search points and model points (ResultNames set to *point_classification’).

3.6.4 Optimize the Search Process

To locate the same interest points that are stored and described in the model in unknown images of the same or a
similar object, the following operators are applied:
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e find_calib_descriptor_model searches for the best matches of a calibrated descriptor model. It returns
the 3D pose of the object and the score describing the quality of the match.

e find_uncalib_descriptor_model searches for the best matches of an uncalibrated descriptor model.
It returns a 2D projective transformation matrix (homography) and the score describing the quality of the
match.

Except for the camera parameters (CamParam), the uncalibrated and the calibrated case need the same parameters
to be adjusted. Note that the camera parameters, assuming the same setup for the creation of the model and the
search, remain the same that were already specified (see section 3.6.3 on page 111). If a different camera is used for
the search, we recommend to apply a new camera calibration as described in the Solution Guide III-C, section 3.2
on page 61. In the following, we show how to

* restrict the search space to a region of interest (section 3.6.4.1),

¢ adjust the detector for the search, which is recommended only in very rare cases (section 3.6.4.2),

* adjust the descriptor for the search (section 3.6.4.3),

* specify the similarity of the object by adjusting the parameter MinScore (section 3.6.4.4),

« search for multiple instances of the object by adjusting the parameter NumMatches (section 3.6.4.5), and

* select a score type by adjusting the parameter ScoreType (section 3.6.4.6).

3.6.4.1 Restrict the Search to a Region of Interest

The obvious way to restrict the search space and thus speed up the matching is to apply the operator
find_uncalib_descriptor_model or find_calib_descriptor_model not to the whole image but only to
an ROI. The corresponding procedure is explained in more detail for shape-based matching in section 3.2.7
on page 70. For descriptor-based matching you simply have to use find_uncalib_descriptor_model or
find_calib_descriptor_model, respectively.

3.6.4.2 Adjust the Detector for the Search (DetectorParamName, DetectorParamValue)

The parameters that control the detection, i.e., the extraction of the interest points from the image, are adjusted via
DetectorParamName and DetectorParamValue. They correspond to the detector parameters that were already
specified during the creation of the model (see section 3.6.3 on page 111). In most cases, they should not be
changed for the search. That is, you simply pass an empty tuple ([]) to the parameters.

In rare cases, especially when there are significant illumination changes between the reference image and the search
image, you may change the parameter values. For example, if a search image is extremely dark and ’lepetit’
was selected as detector, you can set ’min_score’ to a smaller value.

Generally, to test if it is necessary to change any of the parameter values, you can apply the point operator that
corresponds to the detector not only to the reference image, which was proposed for the creation of the model
(see also section 3.6.3.1 on page 112), but also to the search image. Again, about 50 to 450 uniformly distributed
points should be extracted to get a good matching result. If the point operator needs different parameters for the
reference and the search image, it might be necessary to change the values of the corresponding detector parameters
accordingly.

3.6.4.3 Adjust the Descriptor for the Search (DescriptorParamName, DescriptorParamValue)

The parameters that control the determination of the correspondences between the interest points of the search im-
age and those of the model are adjusted via DescriptorParamName and DescriptorParamValue. Two generic
parameters can be set:
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* The parameter ’min_score_descr’ can be set to a value larger than 0.0 (but preferably below 0.1) to
increase the minimal classification score that determines if the individual points are considered as potential
matches. Thus, the number of points for further calculations is reduced, so that the speed of the matching
can be enhanced. But note that this speed-up is obtained at the cost of a reduced robustness, especially if the
number of extracted points is low.

* The parameter *guided_matching’ can be switched off by setting it from ’on’ to ’off’. If the guided
matching is switched on, which is the default, the robustness of the estimation of the model’s location is
enhanced. In particular, points are extracted from the search image and classified by the descriptor. The
points that were accepted by the classification are used to calculate an initial projective 2D (uncalibrated
case) or homogeneous 3D (calibrated case) transformation matrix. This is used then to project all model
points into the search image. If a projected model point is near to one of the originally extracted points,
i.e., independently from its classification, this point is used for the final calculation of the homography that
is returned by the matching as 2D projective transformation matrix or 3D pose, respectively. As typically
without the classification more points can be used for the calculations, the obtained homography is more
robust. On the other hand, in some cases the runtime of the matching may increase up to 10%. Thus, if
robustness is less important than speed, ’guided_matching’ can be switched off.

The HDevelop example program %HALCONEXAMPLESY,\hdevelop\Applications\Object-Recognition-2D\
detect_brochure_pages.hdev is an example for setting ’min_score_descr’ to a higher value (0.003) to
speed up the matching. As the number of points in the images is large enough, the matching is still sufficiently
robust.

find_uncalib_descriptor_model (ImageGray, ModelIDs[Index2], \
'threshold', 600, \
['min_score_descr', \
'guided_matching'], [0.003, 'on'l, \
0.25, 1, 'num_points', HomMat2D, \
Score)

3.6.4.4 Specify the Similarity of the Object (MinScore)

The parameter MinScore specifies the minimum score a potential match must have to be returned as match.
The score is a value for the quality of a match, i.e., for the correspondence, or “similarity”, between the model
and the search image. Note that for the descriptor-based matching, different types of score are available for the
output parameter Score (see section 3.6.4.6). But for the input parameter MinScore, always the score of type
’inlier_ratio’ is used. It calculates the ratio of the number of point correspondences to the number of model
points. In most cases, MinScore should be set to a value of at least 0.1. To speed up the search, it should be
chosen as large as possible, but of course still as small as necessary for the success of the search, as, e.g., a value
of 1.0 is rather unlikely to be reached by a matching.

3.6.4.5 Search for Multiple Instances of the Object (NumMatches)

All you have to do to search for more than one instance of the object is to set the parameter NumMatches to the
maximum number of instances you want to find. If you select the value 0, all matches are returned.

Locating more than one instance, the operators find_uncalib_descriptor_model and
find_calib_descriptor_model return the results for the individual model instances concatenated in the
output tuples. That is, the Score, which is typically a single value for a single model instance (see section 3.6.4.6
for exceptions), is now returned as a tuple for which the number of elements corresponds to the number of
found model instances. The number of elements for the projective transformation matrix (HomMat2D) or the
3D pose (Pose), which are tuples already for a single model instance, is the number of elements of the single
instance multiplied by the number of found instances. How to access the values for a specific match is shown in
section 3.6.5.1. Note that a search for multiple objects is only slightly slower than a search for a single object.

3.6.4.6 Select a Suitable Score Type (ScoreType)

The parameter ScoreType is used to select the type of score that will be returned in the parameter Score. Available
types are ’num_points’ and ’inlier_ratio’:



B-116

The Individual Approaches

e For num_points’, the number of point correspondences per instance is returned. As any four correspon-
dences define a mathematically correct homography between two images, this number should be at least 10
to assume a reliable matching result.

e For ’inlier_ratio’ the ratio of the number of point correspondences to the number of model points is
returned. Although this parameter may have a value between 0.0 and 1.0, a ratio of 1.0 is rather unlikely
to be reached by a matching. Yet, objects having an inlier ratio of less than 0.1 should be disregarded.

Typically, one of both score types is selected, but it is also possible to pass both types in a tuple. Then, the result
for a single found model instance is returned in a tuple as well.

3.6.5 Use the Specific Results of Descriptor-Based Matching

The descriptor-based matching returns for the uncalibrated case a 2D projective transformation matrix (HomMat2D),
for the calibrated case a 3D pose (Pose), and for both cases a score (Score) that evaluates the quality of the
returned object location. The 2D projective transformation matrix and the 3D pose can be used, e.g., to transform a
structure of the reference image into the search image as described in section 2.5.4 on page 41 for the 2D projective
transformation matrix and in section 2.5.5 on page 43 for the 3D pose. The score can be interpreted as described in
section 3.6.4.6 on page 115. Similar to the shape-based matching, descriptor-based matching can return multiple
instances of a model. How to use these multiple instances is shown in section 3.6.5.1.

3.6.5.1 Deal with Multiple Matches

If multiple instances of the object are searched and found, the results are concatenated in tuples. In particular,
Score, which is typically a single value for a single model instance (see section 3.6.4.6 on page 115 for exceptions)
is now a tuple for which the number of elements corresponds to the number of found model instances. The access of
the value for a specific instance is similar to the proceeding described in section 3.1.4.5 on page 51 for correlation-
based matching.

The parameters HomMat2D or Pose are already returned as tuples for a single model instance. For multiple in-
stances, the values are simply concatenated. To access them for a specific match, you must know the number of
elements returned for a single model instance, which is nine for a single projective transformation matrix and seven
for a single 3D pose. Then, e.g., in the tuple returned for the 3D poses, the first seven values belong to the first
instance, the next seven values belong to the second instance, etc. An example for the access of the values for each
instance is described in more detail for calibrated perspective deformable matching in section 3.5.4.5 on page 107.
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formable), 104

allow orientation range for matching (shape-based),
64

component-based matching
first example, 76
overview, 76
correlation-based matching (NCC)
first example, 47
overview, 47
create (train) matching model (component-based),
79
create (train) matching model (correlation-based), 48
create (train) matching model (descriptor-based),
111
create (train) matching model (local deformable), 94
create (train) matching model (perspective de-
formable), 103
create (train) matching model (shape-based), 58, 63
create matching model from DXEF file, 24
create matching model from synthetic template, 21
create matching model from XLD contours, 22
create template, 17

descriptor-based matching
first example, 109
overview, 108
determine training parameters for matching
(correlation-based), 48
determine training parameters for matching (local
deformable), 94

determine training parameters for matching (per-
spective deformable), 103

determine training parameters for matching (shape-
based), 58, 63

display results of matching, 33

find matching model (component-based), 87

find matching model (correlation-based), 50

find matching model (descriptor-based), 113

find matching model (local deformable), 96

find matching model (perspective deformable), 105

find matching model with perspective distortion, 75

find model for matching, 17

find multiple matching models (correlation-based),
51

find multiple matching models (shape-based), 71

find multiple model instances (component-based), 88

find multiple model instances (correlation-based), 51

find multiple model instances (descriptor-based),
115

find multiple model instances (local deformable), 97

find multiple model instances (perspective de-
formable), 107

find multiple model instances (shape-based), 65

get found matching model components, 76, 89

get initial components of matching model, 78

get matching model contours (local deformable), 96

get matching model origin (correlation-based), 49

get matching model origin (descriptor-based), 113

get matching model origin (perspective deformable),
105

get matching model parameters (component-based),
86

get matching model parameters (descriptor-based),
113

get matching model parameters (local deformable),
96

get matching model parameters (perspective de-
formable), 105

get multiple model results of matching (shape-
based), 74

get multiple results of matching (shape-based), 74

image pyramid, 25

inspect matching model (component-based), 86

inspect matching model (correlation-based), 49

inspect matching model (descriptor-based), 113

inspect matching model (local deformable), 96

inspect matching model (perspective deformable),
105
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local deformable matching
first example, 91
overview, 91
localize and visualize results of matching, 33

matching approaches, 47

matching model contours (perspective deformable),
105

matching model parameters (correlation-based), 49

matching model points (descriptor-based), 113

model creation (training), 17

perspective deformable matching, 100, 101

re-use matching model (component-based), 86

re-use matching model (correlation-based), 49

re-use matching model (descriptor-based), 113

re-use matching model (local deformable), 96

re-use matching model (perspective deformable),
105

re-use model, 25

read matching model (component-based), 86

read matching model (correlation-based), 49

read matching model (descriptor-based), 113

read matching model (local deformable), 96

read matching model (perspective deformable), 105

rectify image for matching (shape-based) to adapt to
new camera orientation, 75

reference point for matching, 18

region of interest from matching model, 19

region of interest from matching model (shape-
based), 56

restrict orientation range for matching (component-
based), 87

restrict orientation range for matching (correlation-
based), 50

restrict orientation range for matching (local de-
formable), 97

restrict orientation range for matching (perspective
deformable), 107

results of matching, 29, 30

root component (component-based), 87

rotate 2D homogeneous matrix, 31

scale 2D homogeneous matrix, 31

score, 45

select score type for matching (descriptor-based),
115

select suitable matching approach, 8

set camera parameters for matching (descriptor-
based), 113

set camera parameters for matching (perspective de-
formable), 105

set clutter parameters for matching (shape-based), 66

set generic parameters (local deformable), 96

set generic parameters (perspective deformable), 104

set generic parameters for speedup (local de-
formable), 98

set generic parameters for speedup (perspective de-
formable), 108

set matching model metric (correlation-based), 49

set matching model metric (local deformable), 96

set matching model metric (perspective deformable),
104

set matching model metric (shape-based), 62

set matching model origin (correlation-based), 49

set matching model origin (descriptor-based), 113

set matching model origin (local deformable), 96

set matching model parameters (correlation-based),
53

set number of pyramid levels for matching
(correlation-based), 53

set number of pyramid levels for matching (local de-
formable), 97

set number of pyramid levels for matching (perspec-
tive deformable), 107

set threshold to extract matching model (local de-
formable), 95

set threshold to extract matching model (perspective
deformable), 104

set threshold to extract matching model (shape-
based), 58

set training model origin (perspective deformable),
105

shape-based matching

first example, 55
overview, 53

specify accuracy for matching (correlation-based),
53

specify accuracy for matching (shape-based), 69

specify iconic objects for matching (local de-
formable), 98

specify object similarity for matching (correlation-
based), 50

specify object similarity for matching (descriptor-
based), 115

specify object visibility for matching, 64

specify object visibility for matching (component-
based), 88

specify object visibility for matching (local de-
formable), 97

specify object visibility for matching (perspective
deformable), 107

speed up matching, 27

speed up matching (local deformable), 97

speed up matching (perspective deformable), 107

speed up matching (shape-based), 29, 72

speed up matching using greediness, 29

speed up matching with subsampling, 28

speed up matching with subsampling (correlation-
based), 49

speed up matching with subsampling (local de-
formable), 95

speed up matching with subsampling (perspective
deformable), 104

speed up matching with subsampling (shape-based),
59

timeout for matching (correlation-based), 53
translate 2D homogeneous matrix, 31
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use 3D pose result of template matching, 43

use deformed contours (local deformable), 99

use homography results of matching, 41

use rectified image (local deformable), 99

use region of interest, 28

use region of interest for matching (component-
based), 87

use region of interest for matching (correlation-
based), 48, 50

use region of interest for matching (descriptor-
based), 111, 114

use region of interest for matching (local de-
formable), 94, 97

use region of interest for matching (perspective de-
formable), 102, 107

use region of interest for matching (shape-based), 70

use results of matching (component-based), 89

use results of matching (descriptor-based), 116

use results of matching (local deformable), 98

use results of matching (perspective deformable),
108

use results of matching (shape-based), 74

use synthetic model for matching, 20

use vector field (local deformable), 99

write matching model (component-based), 86
write matching model (correlation-based), 49
write matching model (descriptor-based), 113
write matching model (local deformable), 96
write matching model (perspective deformable), 105
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