HALCON

a product of MVTec

Quick Guide

- i

HALCON 23.05 Progress

EC
M ’ MVTec Software GmbH Building Vision for Business

A quick access to the functionality of HALCON, Version 23.05.0.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

EC
Copyright © 2003-2023 by MVTec Software GmbH, Munich, Germany mviec software cmbH

Protected by the following patents: US 7,239,929, US 7,751,625, US 7,953,290, US 7,953,291, US 8,260,059, US 8,379,014,
US 8,830,229, US 11,328,478. Further patents pending.

Microsoft, Windows, Windows 10 (x64 editions), 11, Windows Server 2016, 2019, 2022 Microsoft .NET, Visual C++ and
Visual Basic are either trademarks or registered trademarks of Microsoft Corporation.

Linux is a trademark of Linus Torvalds.

NVIDIA, CUDA, cuBLAS, and cuDNN are either trademarks or registered trademarks of NVIDIA Corporation.

OpenGL is a trademark of Silicon Graphics, Inc.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at: http://www.halcon.com

http://www.halcon.com

About This Manual

This manual introduces you to HALCON. It is intended for beginners without prior knowledge of HALCON.

This manual can also be used as a reference guide to several other HALCON manuals, as it interconnects them
along the following topics:

1. Installing HALCON (page 7)
This chapter introduces the MVTec Software Manager (SOM).

2. HALCON Architecture (page 9)
Some theoretical background, needed to understand what HALCON is and how it works.

3. How to Develop Applications (page 15)
This chapter explains three basic approaches for developing with HALCON and guides you through a first
programming example.

4. How to Continue (page 19)
This chapter refers to additional sources of information.

Contents

1 Installing HALCON

2 HALCON Architecture

2.1 Operators
2.1.1 Parameters and Data Structures
2.2 Extension Packages
2.3 Language Interfaces
2.3.1 HALCON/Python
232 HALCON/C
233 HALCON/C++
234 HALCON/NET
2.4 Image Acquisition Interfaces
25 I/OlInterfaces
3 How to Develop Applications
3.1 HDevelop
3.2 Example Program
3.2.1 Create Prototype in HDevelop
3.2.2 Prepare Visual Studio Project
3.2.3 Export Library Project

3.2.4 Integrate Library Project Into Visual Studio

4 How to Continue

10
10
11
11
11
11
12
12
13
13

15
15
16
16
17
17
18

19

Installing HALCON

7

Chapter 1

Installing HALCON

For Linux und Windows users, we recommend downloading and installing HALCON via the MVTec Software
Manager (SOM). SOM is an installation manager for software packages. It provides access to a remote cata-
log of products, and supports, among other features, downloading and installation of packages. A step by step
introduction on how to install HALCON via SOM can be found in the Installation Guide.

Installing HALCON

HALCON Architecture

Chapter 2

HALCON Architecture

HALCON’s basic architecture is depicted in figure 2.1. The main part is the image processing library, which
consists of more than 2000 operators. You can also develop your own operators in the form of so-called ex-
tension packages (page 11). You use the operators in your application via language interfaces (page 11) like
HALCON/C++ or HALCON/Python. These are libraries which allow a direct use of the operators in the typical
programming style of the different programming languages.

HALCON Applications

HDevelop Python (@ C++ Ct#t VB.NET

HDevEnNgine HALCON/Python HALCON/C HALCON/C++ HALCON/.NET

Extension
Packages

HALCON Image Processing Library

Image Acquisition Interfaces Al2 (Al Accelerator Interface) 1/0 Interfaces
GigE Vision2 USB3Vision GenlCamTL Many more... TensorRT™ OpenVINO™ toolkit OPC_UA Many more...
3D Cameras, Boards, Cameras Al Accelerator Hardware 1/0 Devices

Figure 2.1: Basic architecture of HALCON.

For the access of image acquisition devices, HALCON provides image acquisition interfaces (page 13) which
allow you to use quite different acquisition devices in a common way. The libraries containing the device-specific
implementations are loaded dynamically when needed. In the same fashion, I/O devices are accessed through

device-specific I/O interfaces (page 13).

)
=
S
=
3]
]
=
=
e
<

10

HALCON Architecture

2.1 Operators

Whenever any kind of functionality is used from the HALCON library, it is done via an operator. Most of them
comprise multiple methods, which are selected via parameters. A full list of all operators can be found in the
HALCON Operator Reference available in HDevelop, .NET, Python, C++, and C syntax. Important features of
operators are:

e There is no hierarchy among operators. From the software architecture point of view, all operators are on the
same level.

e Of course, there are logical groups of operators. For example, this can be seen by the classes offered for
C++ and .NET, where operators processing the same data type are member functions of the corresponding
classes.

e The design of the operators follows the rules of the open architecture. Therefore, you can create your own op-
erators and thus extend HALCON (see section 2.2). The Extension Package Programmer’s Manual contains
detailed information about extending the operator library.

e Many operators can make transparent use of automatic parallelization, which allows an easy way of speeding
up the program when using large images on a multi-processor or multi-core computer. Detailed information
on parallel programming can be found in the technical note Parallel Programming, as well as in the Program-
mer’s Guide.

e Operators have standardized rules for ordering input and output parameters: input iconic, output iconic, input
control, and output control (see section 2.1.1). Not all of the groups might be needed for a given operator. In
general, input parameters of operators are not modified, which results in a clear and simple semantics. There
are only a few exceptions to this design, e.g., set_grayval, overpaint_gray, and overpaint_region.

2.1.1 Parameters and Data Structures

HALCON has two basic types of parameters: iconic data and control data. Images, regions, and XLDs (eXtented
Line Description) belong to the iconic data.

Images consist mainly of channels, i.e., matrices containing pixel values. All channels of an image have the same
size. For detailed information about pixels and channels, please read the chapter “Image” of the HALCON
Operator Reference.

For each image, the so-called region of interest (ROI) specifies which part of the image is processed. The
ROI can be defined very flexibly (from a simple rectangle to a set of unconnected pixels). For details about
ROI handling see the Solution Guide I, Region Of Interest on page 25.

Regions are a set of pixels. The pixels of a region do not need to be connected. Even an arbitrary collection
of pixels can be handled as a single region. With the operator connection a region can be split into its
connected regions, i.e., components consisting of connected pixels.

XLDs comprise all contour and polygon based data. Subpixel-accurate operators like edges_sub_pix return
the contours as XLD data. A contour is a sequence of 2D control points, which are connected by lines.
Typically, the distance between control points is about one pixel. XLD objects contain, besides the control
points, so-called local and global attributes. Typical examples for these are, e.g., the edge amplitude of
a control point or the regression parameters of a contour segment. Besides the extraction of XLD objects,
HALCON supports further processing. Examples for this are the selection of contours based on given feature
ranges for the segmentation of a contour into lines, arcs, polygons or parallels.

2.2 Extension Packages

11

The control data includes handles and basic data types like integer, real, string.

Handles are references to complex data structures, e.g., a connection to an image acquisition interface or a model
for the shape-based matching. For efficiency and data security reasons, not the entire structure but only
the handle is passed between the operators. Handles are magic values that must not be changed and can
differ from execution to execution and version to version. They are automatically cleared once all references
are overwritten. Examples where handles are used are graphics windows, files, sockets, image acquisition
interfaces, OCR, OCV, measuring, and matching.

2.2 Extension Packages

HALCON may be extended by new operators. Although HALCON already contains an abundant set of operators
for various tasks, you may wish to implement new operators, e.g., to access a special hardware or to implement an
alternative algorithm. To do so, HALCON provides the Extension Package Interface, which allows the integration
of new operators (implemented in C) in the form of so-called extension packages. The Extension Package Interface
contains several predefined routines and macros for the easy handling of image data and memory objects in C. Once
a new operator has been successfully integrated, it can be used like any other HALCON operator. The Extension
Package Programmer’s Manual contains detailed information about extending the operator library.

2.3 Language Interfaces

As shown in figure 2.1 on page 9, HALCON provides so-called language interfaces. These are native language
bindings, that enable you to call operators and use HALCON data types directly from within your application, be
it Python, C, C++, or .NET.

To start the development, we recommend to first check one of the ready-to-run example programs. Here, you can
see how the project must be set up and how operators and types are used.

For each language interface, the names of types, classes, the naming conventions of operators, etc. may differ to
be compliant with the typical rules that apply for the selected language. The operator signatures for the supported
programming languages are documented in the HALCON Operator Reference.

2.3.1 HALCON/Python

The Python interface stands out for its simplicity and its ability for rapid prototyping. HALCON operators are
called directly as standalone functions, after importing the HALCON/Python module. Note also that operator
parameters in HALCON/Python are split into function parameters (inputs) and return values (output).

Example
The following code reads an image and computes the number of connected regions (page 10) in it.
img = ha.read_image('pcb")

region = ha.threshold(img, 0, 122)
num_regions = ha.count_obj(ha.connection(region))

print (f'Number of Regions: {num_regions}')

For prerequisites and a detailed walk-through, please see Programmer’s Guide, Part 4, A First Example.

2.3.2 HALCON/C

The C interface is the simplest interface supported by HALCON. Each operator is represented by either one or two
global functions where the operator name and the parameter sequence are identical to the HDevelop language.

12 HALCON Architecture

Example

The following code reads an image and computes the number of connected regions (page 10) in it.

Hobject img;
read_image (&img, "pcb");

Hobject region;
threshold(img, ®ion, 0, 122);

Hobject connected_regions;
connection(region, &connected_regions);

Hlong num_regions = 0;
count_obj(connected_regions, &num_regions);

printf ("Number of Regions: %" PRIAPTR "\n", num_regions);

For prerequisites and a detailed walk-through, please see Programmer’s Guide, Part 5, A First Example.

2.3.3 HALCON/C++

The C++ interface is much more sophisticated than the C interface. Here, the advantages of C++ and object-
oriented programming are used, i.e., automatic type conversion, construction and destruction, or grouping functions
together with their data into classes. Like in the C interface, global functions for each HALCON operator are
provided for a procedural style of programming.

Example
The following code reads an image and computes the number of connected regions (page 10) in it.
HImage img{"pcb"};

HRegion region = img.Threshold(0, 122);
Hlong numRegions = region.Connection().CountObj();

std::cout << "Number of Regions: " << numRegions << "\n';

For prerequisites and a detailed walk-through, please see Programmer’s Guide, Part 2, A First Example.

2.3.4 HALCON/.NET

C# and Visual Basic .NET use HALCON via the .NET interface.

Analogously to C++, two styles of programming are offered: procedural and object-oriented. For the procedural
style, the class HOperatorSet provides all HALCON operators, where HObject is used to handle iconic data
and HTuple is used for control data. For the object-oriented style, classes like HDataCode2d, HMeasure, or
HShapeModel are provided for the central functionality. In addition, classes for iconic data, e.g., HImage or
HRegion, are available.

Example
The following code reads an image and computes the number of connected regions (page 10) in it.
HImage img = new HImage("pcb");

HRegion region = img.Threshold(0d, 122d);
int numRegions = region.Connection().Count0Obj() ;

Console.WriteLine("Number of Regions: " + numRegions);

For prerequisites and a detailed walk-through, please see Programmer’s Guide, Part 3, A First Example.

2.4 Image Acquisition Interfaces

13

2.4 Image Acquisition Interfaces

HALCON’s image acquisition interfaces form the bridge between software provided by the manufacturer of the
image acquisition device and HALCON. They form a common, generic interface that requires a small set of
operators only. Please refer to the Solution Guide II-A for detailed information about this topic.

Currently, HALCON provides interfaces for more than 50 frame grabbers and hundreds of industrial cameras in
the form of dynamically loadable libraries (Windows: DLLs; Unix-like systems: shared libraries). Library names
start with the prefix hAcgq; the libraries ending with the suffix x1 are used by HALCON XL.

The most widely used interfaces based on industry standards are already installed together with the HALCON
libraries. Additional interfaces, as well as the latest versions of already included interfaces can be downloaded un-
der http://www.mvtec.com/products/interfaces. The HALCON image acquisition interfaces may change
more frequently than the HALCON library itself. One reason for this is that MVTec continuously develops new
interfaces; furthermore, if the software provided by the manufacturers of image acquisition devices changes, e.g.,
if new features are integrated, the corresponding HALCON interfaces will be adapted. Please also refer to the
Image Acquisition Interface Reference for a full list of supported image acquisition interfaces.

Once you successfully installed your image acquisition device, all you need to do to access it from HALCON
is to call the operator open_framegrabber, specifying the name of the image acquisition interface and some
additional information, e.g., regarding the connected camera. Then, images can be grabbed by calling the operator
grab_image (or grab_image_async).

2.5 1/0O Interfaces

HALCON provides interfaces for several I/O devices to enable data acquisition. These interfaces are available as
dynamically loadable libraries (Windows: DLLs; Unix-like systems: shared libraries). Library names start with
the prefix hio; the libraries ending with the suffix x1 are used by HALCON XL.

The HALCON I/O device interfaces provide unified access to different I/O devices using a small set of operators.
After you have installed your I/O device, a connection is established using the operator open_io_device, speci-
fying the name of the I/O device interface and, optionally, some device-specific parameters. Once the connection
is established, a transmission channel can be opened by calling open_io_channel. To read and write values on
this channel, use the operators read_io_channel and write_io_channel, respectively.

Please note that the HALCON I/O device interfaces may change more frequently than the HALCON library itself.
You can find the latest information together with downloadable interfaces (including documentation) under http:
//www.mvtec.com/products/interfaces. Please also refer to the I/O Device Interface Reference for a full list
of supported I/O device interfaces.

http://www.mvtec.com/products/interfaces
../../html/reference/acquisition/acq-overview.html
http://www.mvtec.com/products/interfaces
http://www.mvtec.com/products/interfaces
../../html/reference/io/io-overview.html

14 HALCON Architecture

How to Develop Applications

15

Chapter 3

How to Develop Applications

We recommend that you start with rapid prototyping in HDevelop, the interactive development environment for
the HALCON machine vision library. You can use HDevelop to find the optimal operators and parameters to solve
your image analysis task. After developing an HDevelop program according to the given requirements, it has to be
translated into its final environment. For this, you can choose between the following three approaches, depending
on your preferences:

e Start from Scratch: Writing your program from scratch means to translate your HDevelop code into the
target programming language (C++, Python...) manually. As mentioned before, the naming conventions
of operators, the names of classes, etc., may differ between programming languages. Have a look at the
HALCON Operator Reference to get the HALCON operator signatures for each supported programming
language. For information on how to create applications in your desired target language, please read the
Programmer’s Guide.

e Export HDevelop Code: Translate your HDevelop code into the target programming language automatically
using HDevelop’s code export.

e Export Library Project: HDevelop’s library export generates a ready-to-use project folder, including wrap-
per code in the target language and the CMake file to build the project. HDevelop’s library export uses the
HDevEngine, a library that acts as an interpreter. HDevEngine lets you directly execute HDevelop programs
or procedures from an application written in C++ or any language that can integrate .NET objects. Thus, you
do not have to recompile the entire application when making changes to the HDevelop code.

Of course, you can use the HDevEngine without using HDevelop’s library export function. How to use
HDevEngine is described in detail in the Programmer’s Guide, Part 6 (Using HDevEngine).

3.1 HDevelop

Let’s take a first look at HDevelop. Figure 3.1 shows HDevelop’s user interface, after a program has been loaded
and partly been executed.

By default, these windows are visible, which are also essential for developing with HDevelop:

(1) Graphics Window Displays (intermediate) results, namely iconic data (page 10) like images, regions, and
XLDs.

(2) Program Window This is where you type your program code, using operators (page 10) to access HALCON’s
image processing methods.

(3) Variable Window Shows all variables, namely iconic variables and control variables. Iconic variables contain
iconic data (page 10) and control variables contain control data (page 10).

Detailed information about HDevelop can be found in the HDevelop User’s Guide. Our tutorial videos also offer a
good introduction to HDevelop:

HDevelop Tutorial 01: GUI and Navigation
HDevelop Tutorial 02: Variables
HDevelop Tutorial 03: Visualization

http://www.mvtec.com/services-support/videos-tutorials/single-video/hdevelop-tutorial-01-gui-and-navigation
http://www.mvtec.com/services-support/videos-tutorials/single-video/hdevelop-tutorial-02-variables-mvtec-halcon
http://www.mvtec.com/services-support/videos-tutorials/single-video/hdevelop-tutorial-03-visualization-mvtec-halcon

16 How to Develop Applications

C:/Users/Public/Documents/MVTec/HALCON-20.11-Progress/examples/solution_guide/basics/color_pieces_euclid.hdev - MVTec H. =] X
File Edit Execute Visualization Procedures Operators Suggestions Assistants Window Help
DEEIER x ApPRBR® Prda BB HE O QR Gk
Graphics Window: [H25A8AA1B060] @ X Program Window - main () - Main Thread: 8464 @ ®
i BAAAR- Pt ~ »« @ B Zlmain(:::) -3 %

* This example demonstrates a completeness check of colored game |+ |

sification. The training and applicat

2/* pieces using Euclidian cl
* of the classifier is first shown on colored images and then on
* gray images.
. dev_update_off ()
dev_close_window ()
E] dev_open_window (@, @, 557, 416, 'black’', WindowHandle)
y set_display_font (WindowHandle, 14, 'mono’, "true’, ‘false')
—~- dev_set_color ('black')

dev_set_draw ('margin'

Variable Window - main () - Main Thread: 8464 @ [* Initialization
ImageRootName := 'color/co,

Iconic Variables Regions := ['yellow', 'pirl/ 'blue’, 'background']

- Highlight := ['goldenry = nta’, 'cyan’']
1 gen_empty_obj (Classe
i) 19/for Mode := @ to 1 by 1
[read_image (Image, ImageRootName + '@')

/ pieces_0'

Classes Image age | Rectangle | « Simulate gray image |
if (Mode == 1)

Control Variables rgbl_to_gray (Image, GrayImage)

WindowHandle B060 (window) = 2 compose3 (GrayImage, GrayImage, GrayImage, Image)

! ; ' dev_display (Image)

[ogaRociName f°|°rlc?l?r4"ffes—q . disp_message (WindowHandle, 'Train and apply the classes a

Regions ['yellow', 'pink', 'blue’, 'bac... disp_continue_message (WindowHandle, 'black', 'true')

Highlight ['goldenrod', 'magenta’, 'cy... ~ stop ()
endif

All | Auto User Global 5 . .

Automatic program stop; press Run (F5) to... [0] Image (#=1: 557X416X3Xbyte) * D 255,145,81 % 133, 27(

Figure 3.1: HDevelop’s User Interface.

3.2 Example Program

Now that you have been introduced to HDevelop’s User Interface and the basic concepts of HALCON (page 9),
let’s develop a C++ application using the Library Export Approach.

In addition to the following step-by-step instructions, we recommend that you watch our tutorial videos:
Integrate HDevelop code into a C++ application using the Library Project Export
Integrate HDevelop code into a C# application using the Library Project Export

The videos demonstrate the library export and provide more background information about the topic.

3.2.1 Create Prototype in HDevelop

The task of the following example is to read an image and count the number of connected regions it it.
1. Open HDevelop and enter the following code into the Program Window:
read_image (Image, 'pcb')
threshold (Image, Region, 0, 122)

connection (Region, ConnectedRegions)
count_obj (ConnectedRegions, Number)

2. Test your program by clicking Run in the toolbar or pressing .

To easily integrate this HDevelop code into an actual application, we encapsulate the machine vision part in a local
procedure.

1. Highlight the following code lines:
threshold (Image, Region, 0, 122)

connection (Region, ConnectedRegions)
count_obj (ConnectedRegions, Number)

2. Right-click to open the context menu.

http://www.mvtec.com/services-support/videos-tutorials/single-video/hdevelop-library-project-export
http://www.mvtec.com/services-support/videos-tutorials/single-video/integrate-hdevelop-code-into-a-c-application-using-the-library-project-export

3.2 Example Program

17

Choose Create New Procedure.
Name it count_regions.
Select Parameters and change Selection Scheme to First In, Last Out.

Confirm with OK.

N kW

Save your HDevelop program as hdev_count_regions.hdev.

3.2.2 Prepare Visual Studio Project

In this example, we will use Visual Studio 2019. !

1. Create an empty C++ Windows Console project and name it vs_count_regions. Please activate the
option Place solution and project in the same directory. 2

2. Add a C++ source file (Menu Project > Add New Item... > C++ File)
and name it vs_count_regions. cpp.

3. Choose the solution platform x64 from the drop down menu in the toolbar.

4. Open your project properties (Menu Project > vs_count_regions Properties...)
and make the following settings:

e Select C/C++ > General and add the following Additional Include Directories:
$ (HALCONROOT) \include; $ (HALCONROOT) \include\halconcpp;

e Select Linker > General and add the following Additional Library Directory:
$ (HALCONROOT) \1ib\$ (HALCONARCH) ;

e Select Linker > Input and add the following Additional Dependencies:

halconcpp.lib;hdevenginecpp.lib;

3.2.3 Export Library Project

Next, we export our HDevelop program hdev_count_regions.hdev into our Visual Studio project folder.

1. Open the previously created HDevelop program hdev_count_regions.hdev.
2. OpenFile > Export Library Project...
3. Make the following settings:
e Input file: Current Program
e Target Language: C++
e Project Name: hdev_count_regions
e Project Location: Choose the location of our Visual Studio project vs_count_regions.
e Namespace: hdev_count_regions

4. Confirm with Export.

1We recommend using the latest supported version of Visual Studio.
2The directory structure is important, because the final C++ program includes relative paths.

18

How to Develop Applications

Now, your Visual Studio project folder vs_count_regions should contain at least the following data:

> vs_count_regions.cpp (Source File)
> vs_count_regions.sln (Solution)
>hdev_count_regions (Folder from HDevelop Export)
> cmake
>res_hdev_count_regions
>hdev_count_regions.hdev
> source
>hdev_count_regions.cpp
>hdev_count_regions.h
> CMakeLists.txt

3.2.4 Integrate Library Project Into Visual Studio

Lastly, we have to integrate the HDevelop program into our Visual Studio Project.

1. Open the Visual Studio Project.

2. Open Project > Add Existing Item... and choose the C++ file hdev_count_regions.cpp and the
header file hdev_count_regions.h, created by HDevelop’s Library Export. (The files are located in the
folder hdev_count_regions > source.)

3. Enter the following code into vs_count_regions. cpp:

#include <iostream>

#include "HalconCpp.h"
#include "hdev_count_regions/source/hdev_count_regions.h"

int main()
{
HalconCpp: :HImage Image("pcb");

hdev_count_regions::SetResourcePath(“hdev_count_regions/res_hdev_count_regions");

HalconCpp: :HTuple Number{};
hdev_count_regions::count_regions(Image, &Number) ;

std::cout << "Number of Regions: " << Number.L() << "\n';

4. Execute the program. — A console opens, showing the result ’Number of regions: 43’.

How to Continue 19

Chapter 4

How to Continue

To dive deeper into HALCON, we offer further documentation and support.

e HDevelop Example Programs
HALCON provides an extensive set of example programs, not only for HDevelop but also for different
programming languages. These examples can be found in the directory denoted by the environment variable
%HALCONEXAMPLES% or, if the variable is not set, in the subdirectory examples of the folder into which
you have installed HALCON.

To open an HDevelop example program, select the menu File > Browse HDevelop Example
Prograums. . .. For beginners, we recommend to select an example from the category Application area.

e Services and Support
Our website http://www.mvtec.com/services-support offers a variety of support, for example tutorial
videos, information about workshops and trainings, the developers’ corner providing tips and tricks, and
many more.

e HALCON Documentation
The documentation provides a wealth of information, from beginner topics to expert knowledge. For exam-
ple, our Solution Guides describe machine vision methods and how to apply them in HDevelop. A good
starting point is Solution Guide I which introduces you to the main machine vision methods.

An overview of all manuals with a short description can be found on the documentation’s entry page.

http://www.mvtec.com/services-support

	1 Installing HALCON
	2 HALCON Architecture
	2.1 Operators
	2.1.1 Parameters and Data Structures

	2.2 Extension Packages
	2.3 Language Interfaces
	2.3.1 HALCON/Python
	2.3.2 HALCON/C
	2.3.3 HALCON/C++
	2.3.4 HALCON/.NET

	2.4 Image Acquisition Interfaces
	2.5 I/O Interfaces

	3 How to Develop Applications
	3.1 HDevelop
	3.2 Example Program
	3.2.1 Create Prototype in HDevelop
	3.2.2 Prepare Visual Studio Project
	3.2.3 Export Library Project
	3.2.4 Integrate Library Project Into Visual Studio

	4 How to Continue

