
a product of MVTec

Programmer’s Guide

HALCON 23.05 Progress

All about using the programming language interfaces of HALCON, Version 23.05.0.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

Copyright © 2003-2023 by MVTec Software GmbH, Munich, Germany MVTec Software GmbH

Protected by the following patents: US 7,239,929, US 7,751,625, US 7,953,290, US 7,953,291, US 8,260,059, US 8,379,014,
US 8,830,229, US 11,328,478. Further patents pending.

Microsoft, Windows, Windows 10 (x64 editions), 11, Windows Server 2016, 2019, 2022 Microsoft .NET, Visual C++ and
Visual Basic are either trademarks or registered trademarks of Microsoft Corporation.
AMD and AMD Athlon are either trademarks or registered trademarks of Advanced Micro Devices, Inc.
Arm is a registered trademark of Arm Limited.
Intel and Pentium are either trademarks or registered trademarks of Intel Corporation.
Linux is a trademark of Linus Torvalds.
NVIDIA, CUDA, cuBLAS, and cuDNN are either trademarks or registered trademarks of NVIDIA Corporation.
OpenGL is a trademark of Silicon Graphics, Inc.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at: http://www.halcon.com

http://www.halcon.com

About This Manual

This manual describes the programming language interfaces of HALCON and shows how to use HALCON in
programming languages like C++, C#, C, or Visual Basic. It contains the necessary information to understand and
use the provided data structures and classes in your own programs.

We expect the reader of this manual to be familiar with the programming languages themselves and with the
corresponding development tools.

The manual is divided into the following parts:

• General Issues
This part contains information that is relevant for all programming interfaces, e.g., which interface to use for
which programming language or how to use HALCON with parallel programming.

• Programming With HALCON/C++
This part describes the HALCON’s language interface to C++.

• Programming With HALCON/.NET
This part describes HALCON’s language interface to .NET programming languages (C#, Visual Basic .NET,
etc.).

• Programming With HALCON/C
This part describes HALCON’s language interface to C.

• Using HDevEngine
This part describes how to use HDevEngine to execute HDevelop programs and procedures from a program-
ming language.

Symbols

The following symbols are used within the manual:

This symbol indicates a tip.

! This symbol indicates an information you should pay attention to.

Contents

I General Issues 11

1 Which HALCON Interface to Use 13

2 Parallel Programming and HALCON 15
2.1 Automatic Parallelization . 15

2.1.1 Initializing HALCON . 15
2.1.2 Methods of Automatic Parallelization . 15

2.2 Parallel Programming . 16
2.2.1 A Closer Look at Reentrancy . 16
2.2.2 Program Design Issues for Parallelization . 17
2.2.3 Multithreading Operators . 17
2.2.4 Examples . 18

2.3 Threading Issues With Graphics . 18
2.3.1 Microsoft Windows . 18
2.3.2 X11 . 19

2.4 Using HALCON with OpenMP . 19
2.5 Additional Information on HALCON . 19

2.5.1 Customizing the Parallelization Mechanisms . 19
2.5.2 Using an Image Acquisition Interface on Multi-Core or Multi-Processor Hardware 20
2.5.3 Spinlocks, the HALCON Thread Pool, and Real-time Scheduling 20

3 Tips and Tricks 23
3.1 Monitoring HALCON Programs With HALCON Spy . 23

3.1.1 HALCON Spy on Multi-Core or Multi-Processor Hardware 23
3.2 Terminating HALCON Library . 23
3.3 Inspecting HALCON Variables in Visual Studio . 24
3.4 Handling Licensing Errors . 27
3.5 Graphical Applications . 28

II Programming With HALCON/C++ 29

4 Introducing HALCON/C++ 31
4.1 A First Example . 31

5 Basics of the HALCON/C++ Interface 33
5.1 HalconCpp Namespace . 33
5.2 Calling HALCON Operators . 34

5.2.1 A Closer Look at Parameters . 35
5.2.2 Calling Operators via Classes . 37
5.2.3 Constructors and Halcon Operators . 37
5.2.4 Destructors and Halcon Operators . 38
5.2.5 The Tuple Mode . 38

5.3 Error Handling . 40
5.4 Memory Management . 41
5.5 How to Combine Procedural and Object-Oriented Code . 41
5.6 I/O Streams . 42
5.7 Windows API Collisions . 42

6 The HALCON Parameter Classes 43
6.1 Iconic Objects . 43

6.1.1 Regions . 43
6.1.2 Images . 43
6.1.3 XLD Objects . 44

6.2 Control Parameters . 44
6.2.1 Tuples . 44
6.2.2 Strings . 45
6.2.3 Classes Encapsulating Handles . 45

6.3 Vectors . 46

7 Creating Applications With HALCON/C++ 49
7.1 Relevant Directories and Files . 49
7.2 Example Programs . 50
7.3 Relevant Environment Variables . 50
7.4 Writing a Program With Non-ASCII Characters . 51
7.5 Windows . 51
7.6 Linux . 53

8 Typical Image Processing Problems 55
8.1 Thresholding an Image . 55
8.2 Edge Detection . 55
8.3 Dynamic Threshold . 56
8.4 Texture Transformation . 56
8.5 Eliminating Small Objects . 56

III Programming With HALCON/.NET 57

9 Introducing HALCON/.NET 59
9.1 A First Example . 60

10 Creating Applications With HALCON/.NET 61
10.1 Creating Applications With HALCON/.NET . 61
10.2 .NET Development Environments . 61
10.3 Adding HALCON/.NET to an Application . 62

10.3.1 Adding HALCON/.NET to a .NET Core Application . 62
10.3.2 Adding HALCON/.NET to a .NET Framework Application 63

10.4 Deploying an Application . 64
10.5 Using a Newer HALCON/.NET Release . 64

11 HALCON/.NET Interface 65
11.0.1 Specifying the Namespace . 65

11.1 Using HALCON/.NET Classes . 65
11.1.1 Online Help . 66
11.1.2 Calling HALCON Operators . 66
11.1.3 From Declaration to Finalization . 67
11.1.4 Operator Overloads . 69

11.2 Working With Tuples . 70
11.2.1 Calling HALCON Operators with Single or Multiple Values 70
11.2.2 Iconic Tuples . 71
11.2.3 Control Tuples and the Class HTuple . 71

11.3 Working With Vectors . 74
11.4 Error Handling . 75
11.5 Visualization . 76
11.6 Window Controls for Visualization . 77
11.7 Adding and Customizing HSmartWindowControl for the Visualization 78

12 Additional Information 81
12.1 Provided Examples . 81

12.1.1 C# . 81

12.1.2 Visual Basic .NET . 82
12.1.3 C++ . 82

12.2 HALCON/.NET Applications under Linux Using Mono . 83
12.2.1 Restrictions . 83
12.2.2 Deploying HALCON/.NET Applications Created under Windows 83
12.2.3 Compiling HALCON/.NET Applications with Mono . 83
12.2.4 Using Other GUI Libraries . 84

12.3 Using HDevelop Programs . 84
12.3.1 Using the Template Application . 84
12.3.2 Combining the Exported Code with the HALCON/.NET Classes 85

12.4 HALCON/.NET and Remote Access . 85

IV Programming With HALCON/Python 87

13 Introducing HALCON/Python 89
13.1 A First Example . 89

14 Creating Applications With HALCON/Python 91
14.1 Python Development Environments . 91
14.2 Adding HALCON/Python to an Application . 91
14.3 Deploying an Application . 92
14.4 Using a Newer HALCON/Python Release . 92

15 HALCON/Python Interface 93
15.1 Module Import . 93
15.2 Using HALCON Operators From HALCON/Python . 93
15.3 Operators Are Standalone Functions . 94
15.4 Inputs Are Parameters, Outputs Are Return Values . 94
15.5 HALCON Tuples Are Represented With Native Python Types 95
15.6 HHandle . 95
15.7 HObject . 95
15.8 Output Values . 96
15.9 Error Handling . 97
15.10Garbage Collection . 98
15.11Named Parameters . 98
15.12Operator and Parameter Capitalization . 98
15.13UTF-8 in HALCON/Python . 98
15.14HALCON/Python with HALCON XL . 99

V Programming With HALCON/C 101

16 Introducing HALCON/C 103
16.1 A First Example . 103

17 The HALCON Parameter Classes 105
17.1 Image Objects . 105
17.2 Control Parameters . 106

17.2.1 String Encoding . 107
17.2.2 Control Parameter Tuples . 107
17.2.3 Simple Mode . 108
17.2.4 Tuple Mode . 108

17.3 Vectors . 111

18 Return Values of HALCON Operators 119

19 Creating Applications With HALCON/C 121
19.1 Relevant Directories and Files . 121
19.2 Example Programs . 122
19.3 Relevant Environment Variables . 122

19.4 Windows . 123
19.5 Linux . 124

20 Typical Image Processing Problems 127
20.1 Thresholding . 127
20.2 Detecting Edges . 127
20.3 Dynamic Threshold . 128
20.4 Simple Texture Transformations . 128
20.5 Eliminating Small Objects . 128
20.6 Selecting Specific Orientations . 128
20.7 Smoothing Region Boundaries . 129

VI Using HDevEngine 131

21 Introducing HDevEngine 133

22 HDevEngine in C++ Applications 137
22.1 How to Create an Executable Application With HDevEngine/C++ 137
22.2 How to Use HDevEngine/C++ . 138

22.2.1 Executing an HDevelop Program . 138
22.2.2 Executing HDevelop Procedures . 140
22.2.3 Display . 143
22.2.4 Error Handling . 144
22.2.5 Creating Multithreaded Applications . 146
22.2.6 Executing an HDevelop Program with Vector Variables 147

22.3 Using the Just-in-time Compiler With HDevEngine/C++ . 147

23 HDevEngine in .NET Applications 149
23.1 Basics . 149

23.1.1 Adding HDevEngine/.NET to a .NET Core Application 149
23.1.2 Adding HDevEngine/.NET to a .NET Framework Application 149

23.2 Examples . 149
23.2.1 Creating an HDevEngine/.NET Application . 149
23.2.2 Using HDevEngine/.NET . 150
23.2.3 Executing an HDevelop Program . 151
23.2.4 Executing HDevelop Procedures . 152
23.2.5 Display . 157
23.2.6 Error Handling . 158
23.2.7 Creating Multithreaded Applications . 159
23.2.8 Executing an HDevelop Program with Vector Variables 171

23.3 Using the Just-in-time Compiler With HDevEngine/.NET . 171

24 HDevEngine In Python Applications 173
24.1 Introduction . 173

24.1.1 A First Example . 173
24.2 Creating Applications With HDevEngine/Python . 174

24.2.1 Adding HDevEngine/Python to a Python Application . 174
24.3 HDevEngine/Python Interface . 174

24.3.1 Global Functionality . 174
24.3.2 Calling HDevelop Procedures . 176
24.3.3 Calling HDevelop Programs . 179
24.3.4 Dev Operators . 181
24.3.5 HALCON Vectors . 181
24.3.6 Multithreading . 182

25 General Information 183
25.1 Overview of the Classes . 183

25.1.1 HDevEngine, HDevEngineX . 184
25.1.2 HDevProgram, HDevProgramX . 187
25.1.3 HDevProgramCall, HDevProgramCallX . 189

25.1.4 HDevProcedure, HDevProcedureX . 191
25.1.5 HDevProcedureCall, HDevProcedureCallX . 194
25.1.6 HDevOperatorImpl, IHDevOperators, HDevOperatorImplX 196
25.1.7 HDevEngineException . 196

25.2 Debugging HDevEngine From HDevelop . 197
25.2.1 Configuring the Debug Server . 197
25.2.2 Controlling the Debug Server . 198
25.2.3 Security Implications . 199
25.2.4 Limitations . 199

25.3 Tips and Tricks . 199
25.3.1 Troubleshooting . 199
25.3.2 Loading and Unloading Procedures . 199

Index 201

Part I

General Issues

Which HALCON Interface to Use 13

Chapter 1

Which HALCON Interface to Use

Since the introduction of HALCON/.NET, for many programming languages you can now use more than one
interface. Table 1.1 on page 13 guides you through these possibilities.

recommendation alternative(s)
C → HALCON/C
C++ (unmanaged) → HALCON/C++
C++ (managed) → HALCON/.NET HALCON/C++
C# → HALCON/.NET
Visual Basic .NET → HALCON/.NET
Python → HALCON/Python

Table 1.1: Which interface to use for which programming language.

The system requirements and supported platforms are listed in the Installation Guide, section 1.4 on page 8.

G
en

er
al

Is
su

es

14 Which HALCON Interface to Use

Parallel Programming and HALCON 15

Chapter 2

Parallel Programming and HALCON

This chapter explains how to use HALCON on multi-core or multi-processor hardware, concentrating on the main
features: automatic parallelization (section 2.1 on page 15) and the support of parallel programming (section 2.2
on page 16).

2.1 Automatic Parallelization

If HALCON is used on multi-processor or multi-core hardware, it will automatically parallelize image processing
operators. Section 2.1.1 on page 15 describes how to initialize HALCON in order to use this mechanism. Sec-
tion 2.1.2 on page 15 explains the different methods which are used by HALCON operators for their automatic
parallelization.

2.1.1 Initializing HALCON

In order to adapt the parallelization mechanism optimally to the actual hardware, HALCON needs to examine this
hardware once. Afterwards, HALCON programs will be automatically parallelized without needing any further
action on your part. Even existing HALCON programs will run and be parallelized without needing to be changed.

You trigger this initial examination by calling the operator optimize_aop (see the corresponding entry in the
HALCON Reference Manuals for further information). Note, that this operator will only work correctly if called
on a multi-core or multi-processor hardware; if you call the operator on a single-processor or single-core computer,
it will return an error message. As a shortcut, you may call the executable hcheck_parallel which resides in the
directory %HALCONROOT%\bin\%HALCONARCH%.

Upon calling optimize_aop, HALCON examines every operator that can be sped up in principle by an automatic
parallelization. Each examined operator is processed several times - both sequentially and in parallel - with a
changing set of input parameter values, e.g., images. The latter helps to evaluate dependencies between an opera-
tor’s input parameter characteristics (e.g., the size of an input image) and the efficiency of its parallel processing.
Note that this examination may take some hours, depending on your computer and the optimization parameters!

The extracted information is stored in the file .aop_info in the common application data folder (under Windows)
or in the HALCON installation directory $HALCONROOT (under Linux). Please note, that on some operating sys-
tems you need special privileges to initialize HALCON successfully, otherwise the operator optimize_aop is not
able to store the extracted information. Note that in order to execute command line tools with administrator

!privileges, you will need to select “Run as Administrator” (even if you are already logged in as administrator).

Please refer to the examples in the directory %HALCONEXAMPLES%\hdevelop\System\Parallelization for
more information about optimize_aop and about other operators that allow you to query and modify the paral-
lelization information.

2.1.2 Methods of Automatic Parallelization

For the automatic parallelization of operators, HALCON exploits data parallelism, i.e., the property that parts of
the input data of an operator can be processed independently of each other. Data parallelism can be found at four
levels:

G
en

er
al

Is
su

es

16 Parallel Programming and HALCON

1. Tuple level
If an operator is called with iconic input parameters containing tuples, i.e., arrays of images, regions, or
XLDs, it can be parallelized by distributing the tuple elements, i.e., the individual images, regions, or
XLDs, on parallel threads. This method requires that all input parameters contain the same number of
tuple elements (or contain a single iconic object or value).

2. Channel level
If an operator is called with input images containing multiple channels, it can be parallelized by distributing
the channels on parallel threads. This method requires that all input image objects contain the same number
of channels or a single channel image.

3. Domain level
An operator supporting this level can be parallelized by dividing its domain and distributing its parts on
parallel threads.

4. Internal data level
Only parts of the operator are parallelized. The actual degree of parallelization depends on the implemen-
tation of the operator. As a result, the potential speedup on multi-core systems varies among operators
utilizing this parallelization method.

The description of a HALCON operator in the Reference Manuals contains an entry called ’Execution Informa-
tion’, which specifies its behavior when using HALCON on a multi-core or multi-processor hardware. This entry
indicates whether the operator will be automatically parallelized by HALCON and by which method (tuple, chan-
nel, domain, internal data).

The parallelization method of an arbitrary operator opname can also be determined using get_operator_info:

get_operator_info('opname', 'parallel_method', Information)

2.2 Parallel Programming Using HALCON

HALCON supports parallel programming by being thread-safe and reentrant, i.e., different threads can call HAL-
CON operators simultaneously without having to wait. However, not all operators are fully reentrant. This section
takes a closer look at the reentrancy of HALCON. Furthermore, it points out issues that should be kept in mind
when writing parallel programs that use HALCON.

The example program example_multithreaded1.c in the directory example\c shows how to use multithread-
ing to extract different types of components on a board in parallel using HALCON/C.

Furthermore, HALCON provides special operators to synchronize threads (see section 2.2.3 on page 17).

2.2.1 A Closer Look at Reentrancy

In fact there are different “levels” of reentrancy for HALCON operators:

1. Reentrant
An operator is fully reentrant if it can be called by multiple threads simultaneously, independent of the data
it is called with.

Take special care when multiple threads use the same data objects, e.g., the same image variable. In this
case, you must synchronize the access to this variable manually using the corresponding parallel program-
ming mechanisms (mutexes, semaphores). Better still is to avoid such cases as far as possible, i.e., to use
local variables. Note that this is no special problem of HALCON but of parallel programming in general.

2. Local
Operators marked as local should be called only from the thread that instantiates the corresponding objects.

3. Single write, multiple read
A certain group of operators should be called simultaneously only if the different calling threads work on
different data.

2.2 Parallel Programming 17

As this thread behavior is not recommended in general, HALCON does not actively prevent it and thus
saves overhead. This means that if you (accidentally) call such operators simultaneously with the same
data, no thread will block but you might get undesirable effects.

4. Mutually exclusive
Some operators cannot be called simultaneously by multiple threads but may be executed in parallel to
other HALCON operators.

5. Exclusive
A group of operators is executed exclusively by HALCON, i.e., while such an operator is executed, all
other threads cannot call another HALCON operator.

6. Independent
A group of operators is executed independently from others, even exclusive operators.

As mentioned already, the description of a HALCON operator in the Reference Manuals contains an entry called
’Execution Information’, which specifies its behavior when using HALCON. This entry specifies the level of
reentrancy as described above.

2.2.2 Program Design Issues for Parallelization

The following issues have to be considered for multithreaded programming in general:

• Number of threads ≤ number of processors or cores
If you use more threads than there are processors or cores, your application might actually be slower than
before because of the synchronization overhead. Note that when counting threads only the so-called worker
threads are relevant, i.e., threads that are running / working continuously.

• Local variables
If possible, use local variables, i.e., instantiate variables in the thread that uses them. If multiple threads use
the same variable, you must synchronize their access to the variable using the appropriate parallel program-
ming constructs (mutexes, semaphores; please refer to the documentation of your programming language for
details).

When using HALCON, please keep the following issues in mind:

• Initialization
HALCON is initialized implicitly at the first operator call. During this initialization, among others, the li-
cense is checked, HALCON memory management is set up, the thread pool for internal operator paralleliza-
tion is started, internal system parameters and synchronization objects are initialized. This initialization
process is thread safe in a multithreading environment.

Note that the default value of some system parameters can be changed before this initialization process.
Compare the include/HGlobal.h file and some references to the corresponding parameters in this document.
If used, make sure that all default values are set before calling the first operator in your multithreaded envi-
ronment.

• I/O and visualization
Keep in mind that operators that create or delete files work exclusively, i.e., other threads have to wait.

The programmer has to ensure that threads do not access the same file (or handle) simultaneously!

See section 2.3 on page 18 for information about visualization issues on different operating systems.

• Multithreading vs. automatic parallelization
If you explicitly balance the load on multiple processors or cores in a multithreaded program, we recommend
that you either switch off the automatic parallelization mechanism to get an optimal performance or reduce
the number of threads used by it so that the sum of threads does not exceed the number of processors or
cores. How to switch of the automatic parallelization or reduce the number of internal threads is described
in section 2.5.1 on page 19.

2.2.3 Multithreading Operators

In the operator section “System . Multithreading”, HALCON provides operators for creating and using synchro-
nization objects like mutexes, events, condition variables, and barriers.

G
en

er
al

Is
su

es

18 Parallel Programming and HALCON

With them, you can synchronize threads in a platform-independent way. Note, however, that up to now no operators
for creating the threads are provided.

2.2.4 Examples

HALCON currently provides the following examples for parallel programming (paths relative to %HALCONEXAM-

PLES%):

HALCON/C

• c\source\example_multithreaded1.c

two threads extract different elements on a board in parallel

HALCON/.NET

• c#\MultiThreading (C#)

performs image acquisition, processing, and display in three threads

• hdevengine\c#\MultiThreading (C#)

executes the same HDevelop procedure in parallel by two threads using HDevEngine

• hdevengine\c#\MultiThreadingTwoWindows (C#)

executes different HDevelop procedures in parallel by two threads using HDevEngine

HALCON/C++

• mfc\FGMultiThreading (using MFC)

performs image acquisition / display and processing in two threads

• hdevengine\mfc\source\exec_programs_mt_mfc.cpp

executes HDevelop procedures for image acquisition, data code reading, and visualization in parallel using
HDevEngine and MFC

• hdevengine\cpp\source\exec_procedures_mt.cpp

executes HDevelop programs in parallel using HDevEngine

2.3 Threading Issues With Graphics

Various windowing systems have different restrictions on multithreading that have an impact on HALCON graphic
operators.

2.3.1 Microsoft Windows

On Microsoft Windows, accessing a window’s message queue is only possible from the thread that created the
window. Furthermore, a window that has a parent window must be opened in the thread that created the parent
window.

All HALCON graphic operators are automatically redirected to the correct thread. This is done by sending a
special message to the window. To avoid conflicts with user code, the ID of this message is dynamically generated
using the Win32 RegisterWindowMessage function. For windows not created by HALCON (this is relevant
for new_extern_window and when specifying a parent window to open_window), the non-HALCON window is
automatically subclassed using the Win32 SetWindowSubclass function. The only requirement for user code is
that for this mechanism to work, each window must have an active message loop.

To avoid having to write user code to handle the message loop of a HALCON window, HALCON can be instructed
to create all top level HALCON windows from a special thread via set_system('use_window_thread','true'),

2.4 Using HALCON with OpenMP 19

which will then also take care of the message loop. Note that this may negatively affect performance if many
windows are used simultaneously, as HALCON provides only a single thread for all windows.

The various HALCON draw_* operators work by actively polling the message queue. Several draw_* operators
can be active if they target windows belonging to different threads.

2.3.2 X11

When using the X11 windowing system, HALCON will automatically call the Xlib function XInitThreads when
the first window is opened (note that querying the available OpenGL features will open a hidden X11 window in
the background).

This means that if an application using HALCON also uses Xlib functions independently of HALCON, either
directly by explicitly calling Xlib functions or indirectly through some other library that uses Xlib, care must be
taken that XInitLibrary is called first before any other Xlib function. The easiest way to ensure this is to call
XInitThreads very early in the application’s main function, before calling any other library functions.

2.4 Using HALCON with OpenMP

Using different OpenMP runtimes in a single program leads to an undefined behavior. Thus, if you have an
application using HALCON and OpenMP, meaning your application uses the halcondl library and OpenMP, you
have to link against the Intel OpenMP library libiomp5. The latter one is installed with HALCON. For the linking,
the necessary steps depend on your platform:

Windows
You can do this in Visual Studio:

1. Open Visual Studio.

2. Go to Project Properties→ Linker→ Input.

3. Add vcomp.lib (vcompd.lib for the debug configuration) to Ignore Specific Default

Libraries

4. Add libiomp5md.lib from %HALCONROOT%\lib %HALCONARCH% to the Additional

Dependencies.

Linux
For gcc and clang, add

• -fopenmp to the compile flags

• -L$HALCONROOT/lib/$HALCONARCH/thirdparty -liomp5 to the linker flags

2.5 Additional Information

This section contains additional information that helps you to use HALCON on multi-core or multi-processor
hardware.

2.5.1 Customizing the Parallelization Mechanisms

With the help of HALCON’s system parameters, which can be set and queried with the operators set_system and
get_system, respectively, you can customize the behavior of the parallelization mechanisms.

You can query the number of processors (or cores) by calling

get_system('processor_num', Information)

G
en

er
al

Is
su

es

20 Parallel Programming and HALCON

You can switch off parts of the features of HALCON with the help of the operator set_system. To switch off
the automatic parallelization mechanism, call (HDevelop notation, see the Reference Manual for more information)

set_system('parallelize_operators','false')

To switch off reentrancy, call

set_system('reentrant','false')

Of course, you can switch on both behaviors again by calling set_system with 'true' as the second parame-
ter. Please note that when switching off reentrancy you also switch off automatic parallelization, as it requires
reentrancy.

A reason for switching off the automatic parallelization mechanism could be if your multithreaded program does
its own scheduling and does not want HALCON to interfere via automatic parallelization. Note that you do not
need to switch off automatic parallelization when using HALCON on a single-processor or single-core computer;
HALCON does so automatically if it detects only one processor or core.

When switching off the automatic parallelization, you might consider switching off the use of thread pools (see the
parameter ’thread_pool’ of set_system).

Do not switch on reentrancy if this is already the case. Otherwise, this will reset the parallelization system,!
which includes switching on the automatic operator parallelization. This will decrease the performance in case of
manual parallelization (multithreading).

With the system parameter ’parallelize_operators’, you can customize the automatic parallelization mech-
anisms in more detail. Please see the description of set_system for more information.

Finally, you can influence the number of threads used for automatic parallelization with the parameters
’thread_num’ and ’tsp_thread_num’ (set_system). Reducing the number of threads is useful if you also
perform a manual parallelization in your program. If you switch off automatic parallelization permanently, you
should also switch off the thread pool to save resources of the operating system.

2.5.2 Using an Image Acquisition Interface on Multi-Core or Multi-Processor
Hardware

All image acquisition devices supported by HALCON can be used on multi-core or multi-processor hard-
ware. Please note, that none of the corresponding operators is automatically parallelized. Most of the op-
erators are reentrant, only the operators concerned with the connection to the device (open_framegrabber,
info_framegrabber, and close_framegrabber) are processed exclusively in their group, i.e., they block the
concurrent execution of other image acquisition operators but run in parallel with all non-exclusive operators out-
side of this group (see open_framegrabber). Furthermore, these operators are local, i.e., under Windows they
should be called from the thread that instantiates the corresponding object (see section 2.2.1 on page 16).

2.5.3 Spinlocks, the HALCON Thread Pool, and Real-time Scheduling

By default, HALCON uses spinlocks for synchronization between threads to maximize performance. However,
there are several situations where using spinlocks is not recommended:

1. If there are more threads running than there are CPUs to run them on, performance will be severely reduced.

2. If any threads using HALCON use any form of real-time scheduling (SCHED_FIFO, SCHED_RR, or
SCHED_DEADLINE on Linux systems, REALTIME_PRIORITY_CLASS on Windows systems), HALCON can
deadlock.

To turn spinlocks off, call the function HSetUseSpinLock(0) before calling the first HALCON operator. Please
note that calling HSetUseSpinLock after HALCON has been initialized leads to undefined behavior.

2.5 Additional Information on HALCON 21

Spinlocks and the HALCON Thread Pool

The HALCON thread pool used for the automatic operator parallelization will always use spinlocks, even if
HSetUseSpinLock has been called to turn them off. Thus, it is important to make sure the thread pool does
not use more threads than CPUs are actually available to run them on. You must be especially careful if your
program uses any form of real-time scheduling, as your program can deadlock otherwise.

HALCON will normally always create the thread pool during initialization. If you do not need the thread pool,
you can prevent it from being created by calling the function HSetStartUpThreadPool(0) before calling the
first HALCON operator.

HALCON Thread Pool and CPU Affinity on Linux

On Linux systems, threads inherit the CPU affinity of the parent thread that created them. This means that if
the HALCON thread pool is enabled, its threads will be limited by the CPU affinity mask active of the thread
creating the pool at the time the thread pool is created. If the pool is turned off, HALCON’s automatic operator
parallelization will create threads on the fly. These threads will be limited to the CPU affinity mask of the thread
calling the HALCON operator being parallelized.

Please note that HALCON looks at the CPU affinity mask of the process during initialization to determine how
many of the CPUs present can actually be used for automatic operator parallelization only once at startup. Thus,
if you change the CPU affinity subsequently, HALCON will not notice and may end up attempting to use more
CPUs than are available to it. This can degrade performance or lead to deadlocks when using any form of real-time
scheduling. Problems will also ensue if the thread used to initialize HALCON uses a different CPU affinity mask
than its parent process, as HALCON only takes the CPU affinity mask of the process into account.

G
en

er
al

Is
su

es

22 Parallel Programming and HALCON

Tips and Tricks 23

Chapter 3

Tips and Tricks

3.1 Monitoring HALCON Programs With HALCON Spy

HALCON Spy helps you to debug image processing programs realized with HALCON operators by monitoring
calls to HALCON operators and displaying their input and output data in graphical or textual form. Furthermore,
it allows you to step through HALCON programs. Note that under Windows HALCON Spy does only work in

!combination with a console application, i.e., you can not use it together with HDevelop.

HALCON Spy is activated within a HALCON program by inserting the line

set_spy('mode','on')

Alternatively, you can activate HALCON Spy for an already linked program by defining the environment variable
HALCONSPY (i.e., by setting it to any value). How to set environment variables is described in the Installation
Guide, section A.4 on page 39.

You specify the monitoring mode by calling the operator set_spy again with a pair of parameters to be informed
about all operator calls and the names and values of input control parameters. For example:

set_spy('operator','on')
set_spy('input_control','on')

The monitoring mode can also be specified via the environment variable HALCONSPY, using a colon to separate
multiple options:

operator=on:input_control=on

For detailed information on all the debugging options, see the entry for set_spy in the HALCON Reference
Manuals.

3.1.1 HALCON Spy on Multi-Core or Multi-Processor Hardware

Please note that HALCON Spy cannot be used to debug multithreaded programs or programs using the automatic
parallelization.

If you want to use HALCON Spy on a multi-core or multi-processor hardware, you must therefore first switch off
the automatic parallelization as described in section 2.5.1 on page 19.

3.2 Terminating HALCON Library

In applications where DLLs are unloaded in a thread-exclusive context, e.g., with FreeLibrary() under Win-
dows, the HALCON library will not terminate properly if there are still active HALCON threads.

G
en

er
al

Is
su

es

24 Tips and Tricks

A possible scenario in which the problem may occur is using HALCON/C++ to implement an ATL control, for
example.

To overcome this problem, it is necessary to call the function FinalizeHALCONLibrary() before unloading
the DLL. Please note that the application has to be linked against halcon.lib. Make sure that the call to
FinalizeHALCONLibrary() is not from within any other DLL’s DllMain function. Please note that once
FinalizeHALCONLibrary() has been called, no further HALCON functions may be called. Please also note
that the HALCON library is not capable to free all resources properly during termination. This might result in
memory leaks when loading and unloading the HALCON library repeatedly.

3.3 Inspecting HALCON Variables in Visual Studio

HALCON includes an extension for the inspection of HALCON variables in Visual Studio (see the Installation
Guide, section 1.4 on page 8, for the system requirements). A development license is required for this extension
to work (see the Installation Guide, chapter 5 on page 25 for the different license types). If the license is valid
for the HALCON Progress edition, only the corresponding edition of the HALCON Variable Inspect can be used,
i.e., HALCON Progress Variable Inspect requires HALCON Progress. To change the HALCON Variable Inspect
edition, you have to reopen Visual Studio and choose the desired HALCON Variable Inspect edition.

The extension is registered by default for your Visual Studio installation while installing HALCON. In case this
option was deactivated for the installation, you can register the extension manually by double-clicking one of the
following files, depending on your version of Visual Studio:

• For Visual Studio 2019 and before (32-bit), use

%HALCONROOT%/misc/HALCON2305ProgressVariableInspectVisualStudio2019AndEarlier.vsix

• For Visual Studio 2022 and later (64-bit), use

%HALCONROOT%/misc/HALCON2305ProgressVariableInspectVisualStudio2022AndLater.vsix

If multiple versions of Visual Studio are installed on your machine, the installer will let you select the version(s)
you wish to add the extension to. Once installed, the extension should appear in the side pane of Visual Studio. If
it does not, select Tools → HALCON 23.05 Progress Variable Inspect. Please note that the environment
variable %HALCONROOT% must be set for the extension to work.

The extension is provided only for the inspection of iconic objects and tuples in the following languages:

Interface Language
HALCON/C++ C++
HALCON/.NET C#, Visual Basic .NET

Table 3.1: Interface and language.

Restrictions When Using HALCON Variable Inspect

• HALCON Variable Inspect cannot inspect objects located in GPU memory. You can only inspect objects if
they are stored in CPU memory.

• At the moment, HALCON Variable Inspect does not work with C++/CLI applications. The only supported
combinations are native C++ with HALCON/C++, C# with HALCON/.NET, and Visual Basic .NET with
HALCON/.NET.

• Note that Visual Studio Express does not support extensions.

Using HALCON Variable Inspect

While debugging HALCON programs, the extension allows you to inspect the current values of initialized control
and iconic variables. You can either set breakpoints at the desired places or single-step through your program.

The inspection window is divided into two tabs Locals and Watch, see figure 3.1 on page 27.

3.3 Inspecting HALCON Variables in Visual Studio 25

The Locals tab provides a list of all local HALCON variables from the current scope of the program. The variable
list is automatically updated if the scope of the program changes.

The Watch tab contains only selected HALCON variables that have been added by the user to the “Watch” list.
It also allows the inspection of global HALCON variables. Variables can only be added to the “Watch” list if the
program has reached a break point. In addition, local variables can only be added if they are currently in scope.

There are several ways to add a HALCON variable to the “Watch” list:

• Mark a variable in the program code. Then drag the selected variable from the program code to the “Watch”
list.

• Right-click the variable in the program code and select Add to HALCON Watch from the context menu.

• Right-click a variable in the “Locals” list and select Add to Watch from the context menu.

Note that the fewer variables are listed in the inspection window the better the performance. Therefore, moving
only the desired variables to the “Watch” list and inspecting the variables in the Watch tab improves the perfor-
mance.

By default, the variables in the inspection window are listed in the same order as in the Locals window of Visual
Studio. The variables can be sorted in descending or ascending order by clicking on the header of the respective
columns in the inspection window. To switch back to the default order, click the header of the column “#”.

The table Table 3.2 on page 25 describes which information is displayed for the variables of the “Locals” and
“Watch” list of the inspection window.

Columns Description
This column contains no values. It can be used to restore the default order of the

variable list by clicking on the header of this column.
Name Name of the local HALCON variable.
Type Type of the local HALCON variable. Only iconic variables and tuples are sup-

ported in the extension.
Status Current status that indicates if the debug information of the variable could be

retrieved. In case it has been successfully retrieved, a green checkmark is dis-
played. If the information could not be retrieved, a red crossmark is displayed.

Status Message Status message for the variable. If the HALCON data of a variable could not be
retrieved, the status message delivers more detailed information about the cause.
If the HALCON data could be retrieved, additional information about the data
is displayed.

Table 3.2: Columns of the variable lists in the inspection window.

The Watch tab of the inspection window gives some additional information about the scope, see Table 3.3 on page
25.

Column Description
Scope Scope of the HALCON variable. For local HALCON variables the scope “Lo-

cal” is returned and for global HALCON variables the scope “Global”. If the
scope could not be determined, i.e., because the variable is not in the current
scope or uninitialized, “Unknown” is returned.

Inside Scope Current status if the HALCON variable is in the current scope of the program.
If the variable is in the current scope, “True” is returned, else “False”.

Table 3.3: Additional columns of the variable list in the Watch tab.

To select a variable for the inspection, click the corresponding entry in the variable list of the inspection window.
If the debug information and HALCON data of the variable has already been retrieved, i.e., if Status has a green
checkmark, the value of the variable is displayed. Otherwise, the retrieval of the HALCON data is started and the
value of the variable is displayed if the data could be retrieved. To enforce a complete new retrieval of the data,

G
en

er
al

Is
su

es

26 Tips and Tricks

even for variables whose data have already been obtained, double-click the variable. The inspection window is
automatically updated if the content of the currently displayed variable changes.

To deselect a variable, press
�� ��Ctrl and click the respective line of the variable. Alternatively, right-click the line of

the variable and select Deselect all from the context menu. In some cases, it is desired to display the data of a
variable again. This can be achieved by deselecting and selecting the variable again or by double-clicking it.

If a member of a variable cannot be resolved, e.g., if the variable is related to a class, it is not sufficient to inspect
only the member of this variable. Instead, mark the complete expression before right-clicking and inspecting the
member variable.

Please note that native 64-bit data types, e.g., int8 images, and image data with a size > 0.5 GB are not supported.

Inspecting Control Variables

The following information is displayed for control variables (tuples): Name of the control variable, type, and
length. The actual values are displayed as a list from 0 to length−1.

Inspecting Iconic Variables

Iconic variables are displayed graphically in the inspection window, see figure 3.1 on page 27 for an example.
Apart from the visualization of the content, the following information is displayed:

• Name of the iconic variable, type, number of channels (for images), and the dimensions (for images).

• Gray value (v), row (r), and column (c) at the mouse position

The inspection window has a toolbar with the following functionalities:

1 Clear inspection window and free the retrieved data.

2 Fit image into graphics window.

3 Only display last iconic object.

4 Switch interpretation of string values between system locale and UTF-8.
Typically, this setting should match the used HALCON/C++ interface encoding as specified with
HalconCpp::SetHcppInterfaceStringEncodingIsUtf8; see also section 5.2.1 on page 36.

5 Switch layout between vertical and horizontal.

Iconic variables may be stacked: For example, image data may be overlayed with region data by first inspecting
the image variable and then the region variable.

Getting Help

You can open the operator reference of a specific operator right from the context menu of Visual Studio. Move the
mouse cursor over a method name, right-click it and select HALCON Help.

Persistent Settings

The following settings are persistent between sessions:

• Only display last iconic object, figure 3.1 on page 27 (3).

• Window layout (horizontal/vertical), figure 3.1 on page 27 (4).

• Selected tab (Locals/Watch), figure 3.1 on page 27.

Removing HALCON Variable Inspect From Visual Studio

To remove the extension from Visual Studio follow these steps:

1. Open Visual Studio.

2. Select Extensions→ Manage Extensions.

3. Look for “HALCON 23.05 Progress Variable Inspect” in the list of installed extensions and select
Uninstall.

3.4 Handling Licensing Errors 27

Figure 3.1: The window for inspection iconic variables.

3.4 Handling Licensing Errors

When running HALCON with a runtime license and a dongle, HALCON checks regularly whether the dongle is
still available. This check has no measurable impact on the performance of HALCON.

In order to be notified if the dongle was removed and a license error is imminent, applications can register a
callback function with HALCON that will be called when HALCON detects that the dongle is no longer available.
HALCON operators will fail with licensing errors after about two to four minutes after this callback fires. If the
dongle is reinserted before this time, HALCON will continue to operate normally.

Please note that if you do not register a callback and the dongle becomes unavailable during runtime, HALCON
operators will fail with a license error and will therefore not provide meaningful output parameters. Depending on
your application, this might even lead to crashes. It is highly suggested to handle errors from operators correctly
or register the callback to notify the user and/or shut down the application in a controlled way.

To register your own callback function, use the following code in your application:

void __stdcall MyLicenseRecheckFailedCallback(void *context, Herror error)

{

<Add your application-specific callback code here.>

}

Somewhere in your application startup code, add the following:

HSetLicenseRecheckFailedCallback(MyLicenseRecheckFailedCallback,

&MyLicenseRecheckFailedContext);

MyLicenseRecheckFailedContext is a user-defined structure that you can use to pass extra information to your
callback. If you do not need this, you can pass a NULL pointer instead.

To unregister a callback, simply call HSetLicenseRecheckFailedCallback with a NULL pointer as argument.

Note that callbacks are not chained – registering a callback will overwrite any previously registered callback.

For example, in your application, you might implement a proper licensing error handling like this:

To check whether a license is available at all, you can use any operator at the beginning of your application and
check the result.

G
en

er
al

Is
su

es

28 Tips and Tricks

Herror error;

Htuple param, value;

create_tuple_s(¶m, "version");

set_check("~give_error");

error = T_get_system(param, &value);

destroy_tuple(value);

destroy_tuple(param);

if ((error >= H_ERR_LIC_NO_LICENSE) && (error <= H_ERR_LAST_LIC_ERROR))

{

/* Handle licensing error here. */

}

Figure 3.2: Check for licensing errors in C.

try

{

HalconCpp::HTuple value = HalconCpp::HSystem::GetSystem("version");

}

catch (HalconCpp::HException &exception)

{

if ((exception.ErrorCode() >= H_ERR_LIC_NO_LICENSE)

&& (exception.ErrorCode() <= H_ERR_LAST_LIC_ERROR))

{

// Handle licensing error here.

}

}

Figure 3.3: Check for licensing errors in C++.

3.5 Graphical Applications

This section gives some general hints for developing graphical applications.

If you are using graphical user interface (GUI) frameworks, each dialog is managed by a user interface (UI)
thread. The UI thread is responsible for updating the GUI and the execution of callbacks. This means that the
GUI is blocked as long as the UI thread executes the callback. Therefore, callbacks should require as little time as
possible.

If you are using HDevEngine, we recommend that you divide your programming tasks into at least two categories:
image processing and visualization.

For image processing tasks that are initiated by a user action you should start a new thread that handles those
tasks. As soon as the image processing is finished, the UI thread should fetch and display the results. For more
information, please refer to our multithreading example program:

%HALCONEXAMPLES%/c#/MultiThreading

Part II

Programming With HALCON/C++

Introducing HALCON/C++ 31

Chapter 4

Introducing HALCON/C++

HALCON/C++ is HALCON’s interface to the programming language C++. Together with the HALCON library,
it allows to use the image processing power of HALCON inside C++ programs.

This part is organized as follows:

• In section 4.1 on page 31, we start with a first example program.

• Chapter 5 on page 33 then takes a closer look at the basics of the HALCON/C++ interface,

• while chapter 6 on page 43 gives an overview of the classes HImage, etc.

• Chapter 7 on page 49 shows how to create applications based on HALCON/C++.

• Chapter 8 on page 55 presents typical image processing problems and shows how to solve them using HAL-
CON/C++.

4.1 A First Example

This section demonstrates how to create a simple HALCON application with C++. For a more comprehensive
description, see chapter 7 on page 49.

The task is to read an image and compute the number of connected regions in it, as illustrated in figure 4.1 on page
31

Figure 4.1: Left: Input image of a printed circuit board. Middle: Regions found by threshold, colored red. Right:
Connected regions, a result of connection.

1. Install HALCON 23.05

2. Install a C++11 or newer toolchain on your system.

3. Setup your C++ environment of choice.

C
++

32 Introducing HALCON/C++

4. Run the following commands in a shell:

mkdir region_example

cd region_example

5. Create a file named main.cpp and change the content to:

#include <iostream>

#include <HalconCpp.h>

using HalconCpp::HImage;

using HalconCpp::HRegion;

int main()

{

HImage img{"pcb"};

HRegion region = img.Threshold(0, 122);

Hlong numRegions = region.Connection().CountObj();

std::cout << "Number of Regions: " << numRegions << '\n';
}

6. Compile the program.

For details see section 7.5 on page 51 for Windows and section 7.6 on page 53 for Linux.

7. To run the application, type the following command in the same shell:

./region_example

As a result, you should see the following output ’Number of Regions: 43’.

Basics of the HALCON/C++ Interface 33

Chapter 5

Basics of the HALCON/C++ Interface

The HALCON/C++ interface provides two different approaches to use HALCON’s functionality within your C++
program: a procedural and an object-oriented approach. The procedural approach corresponds to calling HAL-
CON operators directly as in C or HDevelop, e.g.:

HObject original_image, smoothed_image;

ReadImage(&original_image, "monkey");

MeanImage(original_image, &smoothed_image, 11, 11);

In addition to the procedural approach, HALCON/C++ allows to call HALCON operators in an object-oriented
way, i.e., via a set of classes. For example, the code from above can be “translated” into:

HImage original_image("monkey");

HImage smoothed_image = original_image.MeanImage(11, 11);

This simple example already shows that the two approaches result in clearly different code: The operator calls
differ in the number and type of parameters. Furthermore, functionality may be available in different ways; for
example, images can be read from files via a constructor of the class HImage. In general, we recommend using
the object-oriented approach. Note, however, that HDevelop can export programs only as procedural C++ code.
Section 5.5 on page 41 shows how to combine procedural with object-oriented code.

In the following sections, we take a closer look at various issues regarding the use of the HALCON/C++ interface;
chapter 6 on page 43 describes the provided classes in more detail.

5.1 HalconCpp Namespace

All functions and classes of HALCON/C++ use the namespace HalconCpp to prevent potential name conflicts
with other C++ libraries.

You can specify (“use”) the namespace in three ways:

• Specifically, by prefixing each class name or operator call with the namespace:

HalconCpp::HObject original_image, smoothed_image;

HalconCpp::ReadImage(&original_image, "monkey");

• Locally, by placing the directive using namespace HalconCpp; at the beginning of a block, e.g., at the
beginning of a function:

C
++

34 Basics of the HALCON/C++ Interface

int main(int argc, char* argv[])

{

using namespace HalconCpp;

HObject original_image, smoothed_image;

ReadImage(&original_image, "monkey");

In this case, you can use HALCON’s classes and functions without prefix inside this block.

• Globally, by placing the directive directly after including HalconCpp.h. In this case, you do not need the
prefix in your whole application:

#include "HalconCpp.h"

using namespace HalconCpp;

• Universally, which can be done both at local and global scope:

using HalconCpp::HObject;

using HalconCpp::ReadImage;

HObject original_image, smoothed_image;

ReadImage(&original_image, "monkey");

Which method is most suitable depends on your application, more specifically, what other libraries it contains and
whether there are any name collisions.

Please note that the namespace is not mentioned in the operator descriptions in the reference manual to keep it
readable. Similarly, in the following sections the namespace is left out.

5.2 Calling HALCON Operators

How a HALCON operator can be called via the HALCON/C++ interface is described in detail in the HALCON
operator reference manual. As an example, figure 5.1 shows parts of the entry for the operator MeanImage.

void MeanImage (const HObject& Image, HObject* ImageMean, const HTuple& MaskWidth,
const HTuple& MaskHeight)

HImage HImage::MeanImage (Hlong MaskWidth, Hlong MaskHeight) const

Image (input_object) . . . (multichannel-)image(-array) ; HImage (byte / int2 / uint2 / int4 / int8 / real / vec-
tor_field)

ImageMean (output_object) . . . (multichannel-)image(-array) ; HImage (byte / int2 / uint2 / int4 / int8 / real /
vector_field)

MaskWidth (input_control) . extent.x ; HTuple (Hlong)

MaskHeight (input_control) . extent.y ; HTuple (Hlong)

Figure 5.1: The head and parts of the parameter section of the reference manual entry for mean_image.

Please note that the reference manual does not list all possible signatures of the operators. A complete list can be
found in the file include\halconcpp\HOperatorSet.h.

Below, we

• take a closer look at the parameters of an operator call (section 5.2.1 on page 35)

• describe how to call operators via classes (section 5.2.2 on page 37) or via special constructors (section 5.2.3
on page 37) or destructors (section 5.2.4 on page 38)

• explain another special HALCON concept, the tuple mode (section 5.2.5 on page 38)

5.2 Calling HALCON Operators 35

void FindBarCode (const HObject& Image, HObject* SymbolRegions, const HTuple& BarCodeHandle,
const HTuple& CodeType, HTuple* DecodedDataStrings)

HRegion HBarCode::FindBarCode (const HImage& Image, const HTuple& CodeType,
HTuple* DecodedDataStrings) const

HRegion HBarCode::FindBarCode (const HImage& Image, const HString& CodeType,
HString* DecodedDataStrings) const

HRegion HBarCode::FindBarCode (const HImage& Image, const char* CodeType,
HString* DecodedDataStrings) const

HRegion HBarCode::FindBarCode (const HImage& Image, const wchar_t* CodeType,
HString* DecodedDataStrings) const

HRegion HImage::FindBarCode (const HBarCode& BarCodeHandle, const HTuple& CodeType,
HTuple* DecodedDataStrings) const

HRegion HImage::FindBarCode (const HBarCode& BarCodeHandle, const HString& CodeType,
HString* DecodedDataStrings) const

HRegion HImage::FindBarCode (const HBarCode& BarCodeHandle, const char* CodeType,
HString* DecodedDataStrings) const

HRegion HImage::FindBarCode (const HBarCode& BarCodeHandle, const wchar_t* CodeType,
HString* DecodedDataStrings) const

Image (input_object) . singlechannelimage ; HImage (byte)

SymbolRegions (output_object) . region(-array) ; HRegion

BarCodeHandle (input_control) . barcode ; HTuple (HHandle)

CodeType (input_control) . string(-array) ; HTuple (HString)

DecodedDataStrings (output_control) . string(-array) ; HTuple (HString)

Figure 5.2: The head and parts of the parameter section of the reference manual entry for find_bar_code.

5.2.1 A Closer Look at Parameters

HALCON distinguishes two types of parameters: iconic and control parameters. Iconic parameters are related
to the original image (images, regions, XLD objects), whereas control parameters are values such as integers,
floating-point numbers, strings, or handles.

A special form of control parameters are the so-called handles. A well-known representative of this type is the
window handle, which provides access to an opened HALCON window, e.g., to display an image in it. Besides,
handles are used when operators share complex data, e.g., the operators for shape-based matching which cre-
ate and then use the model data, or for accessing input/output devices, e.g., image acquisition devices. Classes
encapsulating handles are described in detail in section 6.2.3 on page 45.

Both iconic and control parameters can appear as input and output parameters of a HALCON operator. For ex-
ample, the operator MeanImage expects one iconic input parameter, one iconic output parameter, and two input
control parameters (see figure 5.1); figure 5.2 shows an operator which has all four parameter types. Note how
some parameters “disappear” from within the parentheses if you call an operator via a class; this mechanism is
described in more detail in section 5.2.2 on page 37.

An important concept of HALCON’s philosophy regarding parameters is that input parameters are not modified
by an operator. As a consequence, they are passed by value (e.g., Hlong MaskWidth in figure 5.1) or via a
constant reference (e.g., const HObject& Image). This philosophy also holds if an operator is called via a class,
with the calling instance acting as an input parameter. Thus, in the following example code the original image is
not modified by the call to MeanImage; the operator’s result, i.e., the smoothed image, is provided via the return
value instead:

HImage original_image("monkey");

HImage smoothed_image = original_image.MeanImage(11, 11);

In contrast to input parameters, output parameters are always modified, thus they must be passed by reference.

C
++

36 Basics of the HALCON/C++ Interface

void InfoFramegrabber (const HTuple& Name, const HTuple& Query, HTuple* Information,
HTuple* ValueList)

static HString HInfo::InfoFramegrabber (const HString& Name, const HString& Query, HTuple* ValueList)

static HString HInfo::InfoFramegrabber (const char* Name, const char* Query, HTuple* ValueList)

static HString HInfo::InfoFramegrabber (const wchar_t* Name, const wchar_t* Query, HTuple* ValueList)

Name (input_control) . string ; HTuple (HString)

Query (input_control) . string ; HTuple (HString)

Information (output_control) . string ; HTuple (HString)

ValueList (output_control) . string-array ; HTuple (HString / Hlong / double)

Figure 5.3: The head and parts of the parameter section of the reference manual entry for info_framegrabber.

Note that operators expect a pointer to an already existing variable or class instance! For example, when calling
the operator FindBarCode as in the following lines of code, variables of the class HTuple are declared before
passing the corresponding pointers using the operator &.

HImage image("barcode/ean13/ean1301");

HBarCode barcode(HTuple(), HTuple());

HString result;

HRegion code_region = barcode.FindBarCode(image, "EAN-13", &result);

The above example shows another interesting aspect of output parameters: When calling operators via classes, one
output parameter may become the return value (see section 5.2.2 on page 37 for more details); in the example,
FindBarCode returns the bar code region.

Many HALCON operators accept more than one value for certain parameters. For example, you can call the
operator MeanImage with an array of images (see figure 5.1); then, an array of smoothed images is returned. This
is called the tuple mode; see section 5.2.5 on page 38 for more information.

String Parameters

Regardless of the encoding of the HALCON library (set_system(’filename_encoding’, ...)) the HAL-
CON/C++ interface expects raw char pointer strings that are passed to HALCON operators and to HTuple or
HString instances to be UTF-8 encoded.

Output strings are always of type HString with automatic memory management. These strings are by default
also UTF-8 encoded. The encoding of the HALCON/C++ interface (interface encoding) can be changed to local-
8-bit encoding via a call of HalconCpp::SetHcppInterfaceStringEncodingIsUtf8(false). The current
interface encoding can be requested via HalconCpp::IsHcppInterfaceStringEncodingUtf8(). It is not rec-
ommended to switch the interface encoding back and forth. The setting should be adjusted only once at the very
beginning of the program (before the first HALCON operator or assignment), because HTuple instances can not
store in which encoding the contained strings are present, i.e, for all write and read accesses, the same encoding
must be set. Furthermore, the interface encoding is set globally and is therefore not suitable for multithreading
programs: Changing the setting in one thread has an effect on other threads.

In the following example code, the operator InfoFramegrabber (see also figure 5.3) is called with two output
string parameters to query the currently installed image acquisition board:

HString sInfo, sValue;

InfoFramegrabber(FGName, "info_boards", &sInfo, &sValue);

Note that it is also not necessary to allocate memory for multiple output string parameters returned as HTuple:

5.2 Calling HALCON Operators 37

HImage image("barcode/ean13/ean1301");

HBarCode barcode(HTuple(), HTuple());

HString result;

HRegion code_region = barcode.FindBarCode(image, "EAN-13", &result);

HRegion code_region = image.FindBarCode(barcode, "EAN-13", &result);

HObject image;

HTuple barcode;

HObject code_region;

HTuple result;

ReadImage(&image, "barcode/ean13/ean1301");

CreateBarCodeModel(HTuple(), HTuple(), &barcode);

FindBarCode(image, &code_region, barcode, "EAN-13", &result);

Figure 5.4: Using FindBarCode via HBarCode, via HImage, or in the procedural approach.

HTuple tInfo, tValues;

InfoFramegrabber(FGName, "info_boards", &tInfo, &tValues);

5.2.2 Calling Operators via Classes

As already described in the previous section, the HALCON/C++ reference manual shows via which classes an
operator can be called. For example, FindBarCode can be called via objects of the class HImage or HBarCode (see
figure 5.2 on page 35). In both cases, the corresponding input parameter (Image or BarCodeHandle, respectively)
does not appear within the parentheses anymore as it is replaced by the calling instance of the class (this).

There is a further difference to the procedural operator signature: The first output parameter (in the example the bar
code region SymbolRegions) also disappears from within the parentheses and becomes the return value instead
of the error code (more about error handling can be found in section 5.3 on page 40).

Figure 5.4 depicts code examples for the three ways to call FindBarCode. When comparing the object-oriented
and the procedural approach, you can see that the calls to the operators ReadImage and CreateBarCodeModel

are replaced by special constructors for the classes HImage and HBarCode, respectively. This topic is discussed in
more detail below.

5.2.3 Constructors and Halcon Operators

As can be seen in figure 5.4 on page 37, the HALCON/C++ parameter classes provide additional constructors,
which are based on suitable HALCON operators. The constructors for HImage and HBarCode used in the example
are based on ReadImage and CreateBarCodeModel, respectively.

As a rule of thumb: If a class appears only as an output parameter in an operator, there automatically exists a con-
structor based on this operator. Thus, instances of HBarCode can be constructed based on CreateBarCodeModel

as shown in figure 5.4 on page 37, instances of HShapeModel based on CreateShapeModel, instances of
HFramegrabber based on OpenFramegrabber and so on. Note that for classes where many such operators
exist (e.g., HImage), only a subset of commonly used operators with unambiguous parameter list are actually used
as constructor.

In addition, all classes have empty constructors to create an uninitialized object. For example, you can create an
instance of HBarCode with the default constructor and then initialize it using CreateBarCodeModel as follows:

HBarCode barcode;

barcode.CreateBarCodeModel(HTuple(), HTuple());

C
++

38 Basics of the HALCON/C++ Interface

If the instance was already initialized, the corresponding data structures are automatically destroyed before con-
structing and initializing them anew (see also section 5.2.4). The handle classes are described in more detail in
section 6.2.3.2 on page 46.

HImage image; // still uninitialized

image.ReadImage("clip");

Below we take a brief look at the most important classes. A complete and up-to-date list of available constructors
can be found in the HALCON operator reference and the corresponding header files in %HALCONROOT%\include\

cpp.

• Images:
The class HImage provides constructors based on the operators ReadImage, GenImage1, and
GenImageConst.

• Regions:
The class HRegion provides constructors based on operators like GenRectangle2 or GenCircle.

• Windows:
The class HWindow provides a constructor based on the operator OpenWindow.

Of course, you can close a window using CloseWindow and then open it again using OpenWindow. In
contrast to the iconic parameter classes, you can call the “constructor-like” operator OpenWindow via an
instance of HWindow in the intuitive way, i.e., the calling instance is modified; in addition the corresponding
handle is returned. HWindow is described in more detail in section 6.2.3.1 on page 46.

5.2.4 Destructors and Halcon Operators

All HALCON/C++ classes provide default destructors which automatically free the corresponding memory.

The default destructors of classes encapsulating handles, e.g., HShapeModel or HFramegrabber, work similar to
members like ClearShapeModel or CloseFramegrabber, respectively.

There is no need to call these operators as you can initialize instances anew as described in section 5.2.3.

Basically, we differentiate between destroying a handle and destroying the underlying data structure. The data
structure can be destroyed in two ways: Automatically as soon as the last reference to the data structure has been
deleted. Explicitly by calling an operator, e.g., CloseWindow. Explicit destruction invalidates references, but
access is secure.

5.2.5 The Tuple Mode

As already mentioned in section 5.2.1 on page 35, many HALCON operators can be called in the so-called tuple
mode. In this mode, you can, e.g., apply an operator to multiple images or regions with a single call. The standard
case, e.g., calling the operator with a single image, is called the simple mode. Whether or not an operator supports
the tuple mode can be checked in the reference manual. For example, take a look at figure 5.5, which shows an
extract of the reference manual entry for the operator CharThreshold: In the parameter section, the parameter
Image is described as an image(-array); this signals that you can apply the operator to multiple images at once.

If you call CharThreshold with multiple images, i.e., with an image tuple, the output parameters automat-
ically become tuples as well. Consequently, the parameters Characters and Threshold are described as
region(-array) and integer(-array), respectively.

Note that the class HTuple can also contain arrays (tuples) of control parameters of mixed type; please refer to
section 6.2.1 on page 44 for more information about this class. In contrast to the control parameters, the iconic
parameters remain instances of the class HObject in both modes, as this class can contain both single objects and
object arrays.

In the object-oriented approach, control parameters can be of a basic type (simple mode only) or instances of
HTuple (simple and tuple mode).

After this rather theoretic introduction, let us take a look at two examples which are both realized in the object-
oriented and in the procedural approach. The examples highlight some interesting points:

5.2 Calling HALCON Operators 39

void CharThreshold (const HObject& Image, const HObject& HistoRegion, HObject* Characters,
const HTuple& Sigma, const HTuple& Percent, HTuple* Threshold)

HRegion HImage::CharThreshold (const HRegion& HistoRegion, double Sigma, const HTuple& Percent,
HTuple* Threshold) const

HRegion HImage::CharThreshold (const HRegion& HistoRegion, double Sigma, double Percent,
Hlong* Threshold) const

Image (input_object) . singlechannelimage(-array) ; HImage (byte)

HistoRegion (input_object) . region ; HRegion

Characters (output_object) . region(-array) ; HRegion

Sigma (input_control) . number ; HTuple (double)

Percent (input_control) . number ; HTuple (double / Hlong)

Threshold (output_control) . integer(-array) ; HTuple (Hlong)

Figure 5.5: The head and parts of the parameter section of the reference manual entry for CharThreshold.

• Access to iconic objects:
As expected, in the object-oriented approach, the individual images and regions are accessed via the array
operator []; the number of objects in an array can be queried via the method CountObj(). In the procedural
approach, objects must be selected explicitly using the operator SelectObj; the number of objects can be
queried via CountObj.

Note that object indexes start with 1 (as used by SelectObj).

• Polymorphism of HObject:
The class HObject is used for all types of iconic objects. What is more, image objects can be used for
parameters expecting a region, as in the call to CharThreshold in the examples; in this case, the domain
of the image, i.e., the region in which the pixels are “valid”, is extracted automatically. The object-oriented
approach supports an implicit cast from HImage to HRegion.

The first example shows how CharThreshold is applied in simple mode, i.e., to a single image:

// object-oriented approach

HImage image("alpha1");

HRegion region;

Hlong threshold;

region = image.CharThreshold(image.GetDomain(), 2, 95, &threshold);

image.DispImage(window);

region.DispRegion(window);

cout << "Threshold for 'alpha1': " << threshold;

// procedural approach

HObject image;

HObject region;

HTuple threshold;

ReadImage(&image, "alpha1");

CharThreshold(image, image, ®ion, 2, 95, &threshold);

DispObj(image, window);

DispObj(region, window);

cout << "Threshold for 'alpha1': " << threshold.ToString();

The second example shows how CharThreshold is applied in tuple mode, i.e., to two images at once:

C
++

40 Basics of the HALCON/C++ Interface

// object-oriented approach

HImage images;

HRegion regions;

HTuple thresholds;

images.GenEmptyObj();

for (int i = 1; i <= 2; i++)

{

images = images.ConcatObj(HImage(HTuple("alpha") + i));

}

regions = images.CharThreshold(images.GetDomain()[1], 2, 95, &thresholds);

for (int i = 1; i <= images.CountObj(); i++)

{

images[i].DispImage(window);

regions[i].DispRegion(window);

cout << "Threshold for 'alpha" << i << "': " << thresholds[i - 1].L();

window.Click();

// procedural approach

HObject images, image;

HObject regions, region;

HTuple num;

HTuple thresholds;

GenEmptyObj(&images);

for (int i = 1; i <= 2; i++)

{

ReadImage(&image, HTuple("alpha") + i);

ConcatObj(images, image, &images);

}

CharThreshold(images, image, ®ions, 2, 95, &thresholds);

CountObj(images, &num);

for (int i = 0; i < num; i++)

{

SelectObj(images, &image, i + 1);

DispObj(image, window);

SelectObj(regions, ®ion, i + 1);

DispObj(region, window);

cout << "Threshold for 'alpha" << i + 1 << "': " << thresholds[i].L();

}

5.3 Error Handling

Error handling is fully based on exceptions using try ... catch blocks.

The following code shows how to catch and evaluate errors that might occur when reading an image from file. The
call to ReadImage is encapsulated by a try block; the error code of the exception is evaluated in a corresponding
catch block. For more information on HALCON error codes please refer to the Extension Package Programmer’s
Manual, appendix A on page 105.

5.4 Memory Management 41

try

{

image.ReadImage(filename);

}

catch (HException &except)

{

if (except.ErrorCode() == H_ERR_FNF)

{

// Handle file not found error

}

else

{

// Pass on unexpected error to caller

throw except;

}

}

5.4 Memory Management

All of HALCON’s classes, i.e., not only HImage, HRegion, HTuple, HFramegrabber etc., but also the class
HObject used when calling operators in the procedural approach, release their allocated resources automatically
in their destructor (see also section 5.2.4 on page 38). Furthermore, when constructing instances anew, e.g., by
calling CreateBarCodeModel via an already initialized instance as mentioned in section 5.2.3 on page 37, the
already allocated memory is automatically released before reusing the instance. Thus, there is no need to call
the operator ClearObj in HALCON/C++; what is more, if you do use it HALCON will complain about already
released memory. To explicitly release the resources before the instance gets out of scope, you can call the method
Clear() of the instance.

5.5 How to Combine Procedural and Object-Oriented Code

As already noted, we recommend using the object-oriented approach wherever possible. However, there are some
reasons for using the procedural approach, e.g., if you want to quickly integrate code that is exported by HDevelop,
which can only create procedural code.

The least trouble is caused by the basic control parameters as both approaches use the elementary types long etc.
and the class HTuple. Iconic parameters and handles can be converted as follows:

• Converting HObject into iconic parameter classes

HObject p_image;

ReadImage(&p_image, "barcode/ean13/ean1301");

HImage o_image(p_image);

Iconic parameters can be converted from HObject to, e.g., HImage simply by calling the constructor with
the procedural variable as a parameter.

• Converting handles into specific handle classes

HTuple p_barcode;

CreateBarCodeModel(HTuple(), HTuple(), &p_barcode);

HBarCode o_barcode(p_barcode.H());

o_code_region = o_barcode.FindBarCode(o_image, "EAN-13", &result);

Note that instances of HImage can be used in procedural code where HObject is expected.

As already remarked in section 5.2.4 on page 38, you must not use operators like ClearShapeModel,
ClearAllShapeModels, or CloseFramegrabber together with instances of the corresponding handle classes!

C
++

42 Basics of the HALCON/C++ Interface

5.6 I/O Streams

HALCON/C++ provides iostream operators by default. Note that it may be necessary to enable the namespace
std:

using namespace std;

If you want to use the older iostream interface (i.e., <iostream.h> instead of <iostream>), the following line
has to be added (otherwise, there may be conflicts with the HALCON include files):

#define HCPP_NO_USE_IOSTREAM

5.7 Windows API Collisions

FindText, CreateMutex, CreateEvent, and DeleteFile are also functions of the Windows API. There are
defines on FindTextW, CreateMutexW, CreateEventW, and DeleteFileW if UNICODE is defined, otherwise there
are defines on FindTextA, CreateMutexA, CreateMutexA, and DeleteFileA. These defines are undefined in
HalconCpp.h. If you want to use the corresponding Windows API calls, you must use FindTextA, FindTextW,
CreateMutexA, CreateMutexW, CreateEventA, CreateEventW, DeleteFileA, or DeleteFileW directly.

The HALCON Parameter Classes 43

Chapter 6

The HALCON Parameter Classes

The HALCON operator reference contains a complete list of the generic classes and member functions of HAL-
CON/C++. This chapter contains a summary of additional convenience members.

In addition, HALCON/C++ contains many operator overloads, which are consistent with HALCON/.NET. See
section 11.1.4 on page 69 for a list of the overloaded operators.

6.1 Iconic Objects

The base class of the iconic parameter classes in HALCON/C++ is the class HObject which manages entries in
the database, i.e., the copying or releasing of objects. The class HObject can contain all types of iconic objects.
This has the advantage that important methods like DispObj() can be applied to all iconic objects in the same
manner.

Three classes are derived from the root class HObject:

• Class HRegion for handling regions.

• Class HImage for handling images.

• Class HXLD for handling polygons.

These classes are described in more detail below.

6.1.1 Regions

A region is a set of coordinates in the image plane. Such a region does not need to be connected and it may contain
holes. A region can be larger than the actual image format. Regions are represented by the so-called runlength
coding in HALCON. The class HRegion represents a region in HALCON/C++. Besides those operators that can
be called via HRegion (see also section 5.2.2 on page 37), HRegion provides the following member functions:

• HTuple HRegion::Area()

Area of the region, i.e., number of pixels, see reference manual entry of AreaCenter.

• HTuple HRegion::Row()

Center row of the region.

• HTuple HRegion::Column()

Center column of the region.

6.1.2 Images

There is more to HALCON images than just a matrix of pixels: In HALCON, this matrix is called a channel, and
images may consist of one or more such channels. For example, gray value images consist of a single channel,
color images of three channels. Channels can not only contain the standard 8 bit pixels (pixel type byte) used

C
++

44 The HALCON Parameter Classes

to represent gray value images, HALCON allows images to contain various other data, e.g. 16 bit integers (type
int2) or 32 bit floating point numbers (type real) to represent derivatives. Besides the pixel information, each
HALCON image also stores its so-called domain in form of a HALCON region. The domain can be interpreted as
a region of interest, i.e., HALCON operators (with some exceptions) restrict their processing to this region.

• HTuple HImage::Width()

Return the width of the image, see reference manual entry of GetImageSize.

• HTuple HImage::Height()

Return the height of the image, see reference manual entry of GetImageSize.

6.1.3 XLD Objects

XLD is the abbreviation for eXtended Line Description. This is a data structure used for describing areas (e.g.,
arbitrarily sized regions or polygons) or any closed or open contour, i.e., also lines. In contrast to regions, which
represent all areas at pixel precision, XLD objects provide subpixel precision. There are two basic XLD structures:
contours and polygons.

HALCON/C++ provides both a base class HXLD and a set of specialized classes derived from HXLD, e.g., HXLDCont
for contours or HXLDPoly for polygons.

In contrast to the classes described in the previous sections, the XLD classes provide only member functions
corresponding to HALCON operators (see also section 5.2.2 on page 37).

6.2 Control Parameters

HALCON/C++ can handle different types of control parameters for HALCON operators:

• integer numbers (Hlong),

• floating point numbers (double), and

• strings (HString).

• handles (HHandle).

A special form of control parameters are the so-called handles, which provide access to more complex data struc-
tures like windows, image acquisition connections, or models for shape-based matching. Internally, handles are
represented by a distinct control data type. They are “magic” values that must not be changed and can differ from
execution to execution and version to version. Once all instances of the handle are overwritten or cleared, the
handle and its content will be destroyed and will become invalid. For handles there exist corresponding classes,
which are described in section 6.2.3 on page 45.

With the class HTuple, HALCON/C++ provides a container class for control parameters. HTuple may contain
arrays of control parameters of mixed type.

6.2.1 Tuples

The class HTuple implements an array of dynamic length. The default constructor constructs an empty array
(Length() == 0). This array can dynamically be expanded via assignments. The memory management, i.e.,
reallocation, freeing, is also managed by the class. The index for accessing the array is in the range between 0 and
Length()− 1.

The class HTuple is thread safe. Copies of an HTuple instance can be used in different threads concurrently.

The following member functions reflect only a small portion of the total. For further information please refer to
the file HTuple.h in %HALCONROOT%\include\halconcpp.

• HTuple &HTuple::Append(const HTuple& tuple)

Append data to existing tuple.

• void HTuple::Clear()

Clear all data inside the tuple.

6.2 Control Parameters 45

• HTuple HTuple::Clone()

Create a detached copy duplication the tuple data.

• Hlong HTuple::Length()

Return the number of elements of the tuple.

• HTupleType HTuple::Type()

Return the data type of the tuple (pure data types or mixed tuple).

• HString HTuple::ToString()

Return a simple string representation of the tuple contents.

• Hlong* HTuple::LArr()

double* HTuple::DArr()

char** HTuple::SArr()

Hcpar* HTuple::PArr()

Hphandle* HTuple::HArr()

Access tuple data.

String Encoding

The class HTuple always stores raw char pointer strings in the interface encoding. This is important especially
when accessing the internal raw pointer via the methods HTuple::SArr() and HTupleElement::C().

Under Windows, it is possible to initialize an HTuple or an HTupleElement with a wide character string
(wchar_t*, UTF-16). This wide character string is converted into the current interface encoding (default: UTF-8).
If the interface encoding is not UTF-8, the conversion can involve transcoding errors, i.e., the stored string may
not contain all characters of the input wide character string. The class HTuple does not allow accessing the string
in a different encoding or as wide character string.

6.2.2 Strings

The class HString can be used when transcoding or access to a wide character raw pointer is needed. Like
HTuple, the class can be initialized with a wchar_t pointer string (Windows only) or with a raw char pointer
string with the current interface encoding. HString allows to create a string with a specific encoding via
HString::FromUtf8(const char*) or HString::FromLocal8bit(const char*).

Furthermore, this class allows storing the same string in UTF-8, local-8-bit encoding, and wide character string at
the same time. Thus it is save to use the required raw pointer, as long as the HString instance is not modified or
destroyed. The string remains the owner of the string memory for all representations.

The following methods for accessing raw pointers are provided:

• HString::TextA() and HString::Text()

Return the string as char pointer in the interface encoding.

When the char pointer string is needed in a different encoding, the methods HString::ToUtf8() and
HString::ToLocal8bit() can be used.

The methods HString::LengthA() and HString::Length() return the length in bytes of the char pointer
string returned by HString::TextA() and HString::Text(), respectively.

• HString::TextW() (Windows only)
Returns the string as wide character pointer.

The method HString::LengthW() returns the length of the string returned by HString::TextW() in
words of the datatype wchar_t.

6.2.3 Classes Encapsulating Handles

The perhaps most prominent handle class is HWindow, which is described in section 6.2.3.1. HALCON/C++ also
provides classes for handles to files or functionality like access to image acquisition devices, measuring, or shape-
based matching. See section 6.2.3.2 on page 46 for an overview.

C
++

46 The HALCON Parameter Classes

6.2.3.1 Windows

The class HWindow provides the management of HALCON windows in a very convenient way. The properties of
HALCON windows can be easily changed, images, regions, and polygons can be displayed, etc. Besides those
operators that can be called via HWindow (see also section 5.2.2 on page 37), HWindow provides the following
member functions:

• void HWindow::Click()

Wait for a mouse click in the window.

• void HWindow::CloseWindow()

Close the window.

6.2.3.2 Other Handle Classes

HALCON/C++ provides the so-called handle classes like HFramegrabber, HBarCode, or HClassMlp. These are
based on the class HHandle.

Besides the default constructor, the classes typically provide additional constructors based on suitable operators
as described in section 5.2.3 on page 37; e.g., the class HBarCode provides a constructor based on the operator
CreateBarCodeModel.

The reference manual provides short overview pages for these classes, listing the operators that can be called via
them.

6.3 Vectors

HALCON/C++ provides the class HVector for the use of HALCON vectors in C++ programs. A HALCON vector
is a container that can hold an arbitrary number of elements of the identical data type (i.e., tuple, iconic object,
or vector) and dimension. The type of a vector, i.e., its dimension and the type of its elements is defined when
initializing the vector instance and cannot be changed during its lifetime. A vector with one dimension may be a
vector of tuples or a vector of iconic objects. A two-dimensional vector may be a vector of vectors of tuples or a
vector of vectors of iconic objects, and so on.

Two classes are derived from the root class HVector:

• Class HObjectVector for handling vectors of iconic objects

• Class HTupleVector for handling vectors of tuples

In the following some basic information on how to use vectors in HALCON/C++ is given, e.g., how to construct
vectors and how to access and set vector elements. For a complete list of the available functionality please refer to
the corresponding header file HVector.h in %HALCONROOT%\include\halconcpp.

Construction of Vectors

As already mentioned above, a distinction is made between vectors of iconic objects (HObjectVector) and vectors
of tuples (HTupleVector). The type of a vector must be defined at its construction as in the following lines:

// Create a one-dimensional vector of iconic objects

HObjectVector vectorObj(1);

// Create a one-dimensional vector of tuples

HTupleVector vectorTup(1);

Note that the type of the vector cannot be changed within a program after its construction. Thus, a tuple cannot be
assigned to a vector of iconic objects and vice versa.

To create a two-dimensional vector, i.e., a vector of vectors of iconic objects or a vector of vector of tuples you
may use the following line:

6.3 Vectors 47

// Create a two-dimensional vector of iconic objects

HObjectVector vectorObjMulti(2);

// Create a two-dimensional vector of tuples

HTupleVector vectorTupMulti(2);

You can also create a multi-dimensional vector with more than two dimensions by specifying the desired dimension
in brackets. However, the dimension of a vector is part of its type and has to remain constant within the program
and cannot be changed.

Note that the vectors created by these calls are still empty. How to set the elements of vectors and how to access
them is described below.

Accessing and Setting Vector Elements

Like with the construction of vectors, the call for accessing and setting vector elements differs depending on the
vector type. A single element of a vector of iconic objects may be accessed by using the method O() whereas the
elements of a vector of tuples may be accessed with T().

// Access a vector element of a one-dimensional HObjectVector

vectorObj[elem_index].O();

// Access a vector element of a one-dimensional HTupleVector

vectorTup[elem_index].T();

The vector element to be accessed is addressed by the specified index in square brackets. If a subelement of a
multi-dimensional vector is to be accessed, you have to use the indices of the corresponding subvector and its
subelement instead.

// Access a subelement of a two-dimensional HObjectVector

vectorObjMulti[vec_index][elem_index].O();

The left index vec_index defines the index of the subvector and elem_index defines the desired element of the
specified subvector.

If a vector element is to be set, the expression for accessing a vector element is used as reference to the HObject
or HTuple element to be set. The right side of the assignment specifies the value which is assigned to the vector
element.

// Set a vector element of a one-dimensional HObjectVector

vectorObj[0].O() = HImage("Image");

// Set a vector element of a one-dimensional HTupleVector

HTuple tuple;

tuple[0] = 1.0;

tuple[1] = 2.5;

vectorTup[0].T() = tuple;

In the example code above the Image is copied and set as the first vector element of vectorObj. The tuple is also
copied and set as first vector element of vectorTup.

Setting a subelement of a multi-dimensional vector can be done with the same call. However, instead of a single
index, multiple indices must be specified for the corresponding vector element and its subelement, which is to be
set.

// Set a subelement in a two-dimensional HObjectVector

vectorObjMulti[0][1].O() = HImage("Image");

It is also allowed to write to a non-existing vector element. Then, the vector is automatically filled with empty
elements if necessary.

C
++

48 The HALCON Parameter Classes

Destruction of a Vector

If a vector is not needed anymore for further processing, its contents can be cleared with the following call,
explicitly:

vectorTup.Clear();

Additional Information

In addition to the described functionalities HObjectVector and HTupleVector provide some more functionality
for the use of HALCON vectors in HALCON/CPP, e.g., inserting or removing vector elements, or concatenation
of vectors. Please refer to the corresponding header file HVector.h in %HALCONROOT%\include\halconcpp for
more information.

Creating Applications With HALCON/C++ 49

Chapter 7

Creating Applications With
HALCON/C++

The HALCON distribution contains examples for creating an application with HALCON/C++. The following
sections show

• the relevant directories and files (section 7.1 on page 49)

• the list of provided example applications (section 7.2 on page 50)

• the relevant environment variables (section 7.3 on page 50)

• how to store source files with non-ASCII characters (section 7.4 on page 51)

• how to create an executable under Windows (section 7.5 on page 51)

• how to create an executable under Linux (section 7.6 on page 53)

7.1 Relevant Directories and Files

Here is an overview of the relevant directories and files (relative to %HALCONROOT%, Windows notation of paths):

• include

include directory; contains, e.g., Halcon.h, which is referenced by HalconCpp.h

• include\halconcpp\HalconCpp.h

Include file; contains all user-relevant definitions of the HALCON system and the declarations necessary for
the C++ interface

• bin\%HALCONARCH%\halcon.dll, lib\%HALCONARCH%\halcon.lib
HALCON library (Windows)

• bin\%HALCONARCH%\halconcpp.dll, lib\%HALCONARCH%\halconcpp.lib
HALCON/C++ library (Windows)

• bin\%HALCONARCH%\halconxl.dll, halconcppxl.dll,
lib\%HALCONARCH%\halconxl.lib, halconcppxl.lib
Corresponding libraries of HALCON XL (Windows)

• lib/$HALCONARCH/libhalcon.so

HALCON library (Linux)

• lib/$HALCONARCH/libhalconcpp.so

HALCON/C++ library (Linux)

• lib/$HALCONARCH/libhalconxl.so, libhalconcppxl.so

Corresponding libraries of HALCON XL (Linux)

C
++

50 Creating Applications With HALCON/C++

• include\HProto.h

External function declarations

• %HALCONEXAMPLES%\cpp\console\CMakeLists.txt

Example CMake file, which can be used to compile the example programs

• %HALCONEXAMPLES%\cpp\console\README.md

Information about building the examples using CMake

• %HALCONEXAMPLES%\cpp\console\source\

Directory containing the source files of the example programs

• %HALCONEXAMPLES%\images\

Images used by the example programs

• help\operators_*

Files necessary for online information

• doc\pdf\

Various manuals (in subdirectories)

7.2 Example Programs

You can find several example programs in the HALCON/C++ distribution (%HALCONEXAMPLES%\cpp\source\
console\). To experiment with these examples, we recommend creating a private copy in your working direc-
tory.

error_handling.cpp Demonstrates the C++ exception handling (see section 5.3 on page 40)

ia_callback.cpp Shows the usage of the HALCON image acquisition callback functionality

matching.cpp Locates a chip on a board and measures the pins

serialized_item.cpp Shows how to use the serialization of HALCON objects and tuples in the C++ interface

You can find additional examples for using HALCON/C++ in the subdirectories mfc, motif, and qt of
%HALCONEXAMPLES%.

7.3 Relevant Environment Variables

In the following, we briefly describe the relevant environment variables. For more information, especially about
how to set these variables, see the Installation Guide, section A.4 on page 39. Under Windows, all necessary
variables are automatically set during the installation.

While a HALCON program is running, it accesses several files internally. To tell HALCON where to look for these
files, the environment variable HALCONROOT has to be set. HALCONROOT points to the HALCON home directory.

The variable HALCONARCH describes the platform HALCON is used on. Please refer to the Installation Guide,
section 1.4 on page 8, for more information.

The variable HALCONEXAMPLES indicates where the provided examples are installed.

If user-defined packages are used, the environment variable HALCONEXTENSIONS has to be set. HALCON will
look for possible extensions and their corresponding help files in the directories given in HALCONEXTENSIONS.

Keep the following in mind in connection with the example programs:

• Default location for images
The default directory for the HALCON operator ReadImage to look for images is %HALCONEXAMPLES%\

images. If the images reside in different directories, the appropriate path must be set in ReadImage or the
default image directory must be changed, using SetSystem("image_dir","..."). This is also possible
with the environment variable HALCONIMAGES. The latter has to be set before starting the program.

7.4 Writing a Program With Non-ASCII Characters 51

• Output terminal under Linux
In the example programs, no host name is passed to OpenWindow. Therefore, the window is opened on the
machine that is specified in the environment variable DISPLAY. If output on a different terminal is desired,
this can be done either directly in OpenWindow(...,"hostname",...) or by specifying a host name in
DISPLAY.

7.4 Writing a Program With Non-ASCII Characters

There are some common traps and pitfalls when programs containing string constants with non-ASCII characters
are executed. The following ways to store the source files have different implications:

• Store source file in local 8-bit encoding
Only native characters can be stored. String constants that are created by the compiler are
also encoded in local 8-bit encoding, i.e., the execution character set is local 8-bit. If
strings in local 8-bit encoding are passed to HALCON C or HALCON/C++, either change
the interface default encoding (by calling SetHcInterfaceStringEncodingIsUtf8(false) or
SetHcppInterfaceStringEncodingIsUtf8(false), respectively) or create the string that is passed to
HALCON with a suitable conversion function, e.g., HString::FromLocal8Bit(). When using HAL-
CON/C++ as an alternative, the string constant can be created as wide character string with “L...”.

• Store source file in UTF-8 with or without BOM signature
The big advantage is that any Unicode characters can be stored. To store files without BOM signature in
Visual Studio, choose Unicode (UTF-8 without signature) - Codepage 65001 in the Save As or
Advanced Save Options dialog. Without BOM signature, the files are not automatically detected as UTF-
8 files, i.e. they are interpreted as local 8-bit files. Files with BOM signature marker are correctly read as
UTF-8 files. However, the compiler converts the string constants automatically into local 8-bit encoding,
i.e., although the source character set is UTF-8, the execution character set is still local 8-bit. Hence, when
passing these strings to HALCON, all points mentioned above are valid. When using Visual Studio 2015
it is possible to set the compiler option /utf-8. You can add this option in Project Property Page >

Configuration Properties > C/C++ > All Options > Additional Options. If this option is set,
both the source character set and the execution character set are UTF-8 (which works also without the BOM
signature). In this case, all strings are UTF-8 and can directly be passed to HALCON.

7.5 Creating an Executable Under Windows

Your own C++ programs that use HALCON operators must include the file HalconCpp.h, which contains all
user-relevant definitions of the HALCON system and the declarations necessary for the C++ interface. Do this by
adding the following command near the top of your C++ file:

#include "HalconCpp.h"

To create an application, link the library halconcpp.lib to your program.

The example projects show the necessary Visual C++ project settings. Basically, you need to specify the correct
include path in the compiler settings, and the correct library path and libraries in the linker settings:

Compiler:

Include Directories: $(HALCONROOT)\include,$(HALCONROOT)\include\halconcpp

Linker:

Library Directories: $(HALCONROOT)\lib\$(HALCONARCH)

Additional Dependencies: halconcpp.lib

HALCON XL applications:
Please note that you should use HALCON XL only when you need its features.

!If you want to use HALCON XL, link the library halconcppxl.lib instead.

C
++

52 Creating Applications With HALCON/C++

Compiling and Linking an Example Program Under Windows

The following example shows a very basic C++ program called main.cpp, which reads an image and then prints
its width and height:

#include "HalconCpp.h"

#include <iostream>

int main(int argc, char **argv)

{

HalconCpp::HObject hobj;

HalconCpp::HTuple width, height;

HalconCpp::ReadImage(&hobj, "printer_chip/printer_chip_01");

HalconCpp::GetImageSize(hobj, &width, &height);

std::cout << "Image - width: " << width.I() << ", height: " << height.I() << '\n';
return 0;

}

To compile and link the program under Windows, run:

cl main.cpp /I %HALCONROOT%\include /I %HALCONROOT%\include\halconcpp

/link %HALCONROOT%\lib\%HALCONARCH%\halconcpp.lib

Building HALCON Examples With CMake Under Windows

You can find examples that showcase various HALCON use cases and how they are implemented in C++
in the directories below %HALCONEXAMPLES%\cpp. You can build them with CMake by using the provided
CMakeLists.txt file.

To build example programs using CMake, do the following:

1. If required, download CMake (version 3.7.1 or later) from the CMake website and install it.

2. Create a build directory and then run cmake to configure the build and create the application:

mkdir build

cd build

cmake %HALCONEXAMPLES%\cpp\console

cmake --build .

To configure, CMake needs to know the location of the HALCON installation, the location of the example
files, and which HALCON architecture to use:

• Specify the location of the HALCON installation via the HALCON_DIR CMake option, or via the
%HALCONROOT% environment variable if the option is not set.

• Specify the location of the HALCON example files via the %HALCONEXAMPLES% environment vari-
able.

• Specify the HALCON architecture with the HALCON_ARCHITECTURE CMake option, or via the
%HALCONARCH% environment variable. If neither the option nor the environment variable are set,
CMake will try to guess the architecture based on the host build system.

For general information on how to use CMake, see the CMake documentation.

HALCON XL applications: By default, the examples will be built using the normal version of HALCON.
If you want to build using HALCON XL, set the option HALCON_XL to ON or 1 in CMake during the
configuration step. For this, use the following syntax:

cmake -DHALCON_XL=1 %HALCONEXAMPLES%\cpp\console

3. Optionally, you can use the -G option to specify the generator for a new build tree.
For more information about CMake generators, see the CMake documentation.

https://cmake.org/download/
https://cmake.org/runningcmake/
https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html#cmake-generators

7.6 Linux 53

You can find corresponding CMakeLists.txt files in the other subdirectories as well (mfc\FGMultiThreading,
mfc\Matching, mfc\MatchingExtWin, qt\Matching).

7.6 Creating an Executable Under Linux

Your own C++ programs that use HALCON operators must include the file HalconCpp.h, which contains all
user-relevant definitions of the HALCON system and the declarations necessary for the C++ interface. Do this by
adding the following command near the top of your C++ file:

#include "HalconCpp.h"

To specify the include path for the compiler on the command line, use the following syntax:

-I$HALCONROOT/include -I$HALCONROOT/include/halconcpp

To create an application, you have to link two libraries to your program: The library libhalconcpp.so contains
the various components of the HALCON/C++ interface. The library libhalcon.so is the HALCON library. To
specify the library path and the libraries for the linker, use the following syntax:

-L$HALCONROOT/lib/$HALCONARCH -lhalconcpp -lhalcon -lpthread

On some systems, you also have to link the libraries libdl.so and librt.so (by using the additional options
-ldl and -lrt, respectively).

HALCON XL applications:
Please note that you should use HALCON XL only when you need its features.

!If you want to use HALCON XL, link the libraries libhalconcppxl.so and libhalconxl.so instead.

To link and run applications under Linux, ensure that the system variable LD_LIBRARY_PATH contains the HAL-
CON library path $HALCONROOT/lib/$HALCONARCH.

Compiling and Linking an Example Program Under Linux

The following example shows a very basic C++ program called main.cpp, which reads an image and then prints
its width and height:

#include "HalconCpp.h"

#include <iostream>

int main(int argc, char **argv)

{

HalconCpp::HObject hobj;

HalconCpp::HTuple width, height;

HalconCpp::ReadImage(&hobj, "printer_chip/printer_chip_01");

HalconCpp::GetImageSize(hobj, &width, &height);

std::cout << "Image - width: " << width.I() << ", height: " << height.I() << '\n';
return 0;

}

To compile and link the program under Linux, run:

g++ -o example main.cpp -I$HALCONROOT/include -I$HALCONROOT/include/halconcpp \

-L$HALCONROOT/lib/$HALCONARCH -lhalconcpp -lhalcon -lpthread

C
++

54 Creating Applications With HALCON/C++

Building HALCON Examples With CMake Under Linux

You can find examples that showcase various HALCON use cases and how they are implemented in C++
in the directories below $HALCONEXAMPLES/cpp. You can build them with CMake by using the provided
CMakeLists.txt file.

To build example programs using CMake, do the following:

1. If required, download CMake (version 3.7.1 or later) from the CMake website and install it.

2. Create a build directory and then run cmake to configure the build and create the application:

mkdir build

cd build

cmake $HALCONEXAMPLES/cpp/console

cmake --build .

To configure, CMake needs to know the location of the HALCON installation, the location of the example
files, and which HALCON architecture to use:

• Specify the location of the HALCON installation via the HALCON_DIR CMake option, or via the
$HALCONROOT environment variable if the option is not set.

• Specify the location of the HALCON example files via the $HALCONEXAMPLES environment variable.

• Specify the HALCON architecture with the HALCON_ARCHITECTURE CMake option, or via the
$HALCONARCH environment variable. If neither the option nor the environment variable are set,
CMake will try to guess the architecture based on the host build system.

For general information on how to use CMake, see the CMake documentation.

HALCON XL applications: By default, the examples will be built using the normal version of HAL-
CON. If you want to build using HALCON XL, set the option HALCON_XL to ON or 1 in CMake during
configuration.

3. Optionally, you can use the -G option to specify the generator for a new build tree.
For more information about CMake generators, see the CMake documentation.

You can find corresponding CMakeLists.txt files in the other subdirectories as well (mfc/FGMultiThreading,
mfc/Matching, mfc/MatchingExtWin, motif/Matching, qt/Matching).

https://cmake.org/download/
https://cmake.org/runningcmake/
https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html#cmake-generators

Typical Image Processing Problems 55

Chapter 8

Typical Image Processing Problems

This chapter shows the power the HALCON system offers to find solutions for image processing problems. Some
typical problems are introduced together with sample solutions.

8.1 Thresholding an Image

Some of the most common sequences of HALCON operators may look like the following one:

HImage Image("file_xyz");

HRegion Threshold = Image.Threshold(0,120);

HRegion ConnectedRegions = Threshold.Connection();

HRegion ResultingRegions =

ConnectedRegions.SelectShape("area","and",10,100000);

This short program performs the following:

• All pixels are selected with gray values between the range 0 and 120. It is also possible to use the equivalent
call:

HRegion Threshold = (Image <= 120);

• A connected component analysis is performed.

• Only regions with a size of at least 10 pixel are selected. This step can be considered as a step to remove
some of the noise from the image.

8.2 Edge Detection

For the detection of edges the following sequence of HALCON/C++ operators can be applied:

HImage Image("file_xyz");

HImage Sobel = Image.SobelAmp("sum_abs",3);

HRegion Max = Sobel.Threshold(30,255);

HRegion Edges = Max.Skeleton();

Some notes:

• Before applying the sobel operator it might be useful first to apply a low-pass filter to the image in order to
suppress noise.

• Besides the sobel operator you can also use filters like EdgesImage, PrewittAmp, RobinsonAmp,
KirschAmp, Roberts, BandpassImage, or Laplace.

• The threshold (in our case 30) must be selected appropriately depending on data.

• The resulting regions are thinned by a Skeleton operator. This leads to regions with a pixel width of 1.

C
++

56 Typical Image Processing Problems

8.3 Dynamic Threshold

Another way to detect edges is the following sequence:

HImage Image("file_xyz");

HImage Mean = Image.MeanImage(11,11);

HRegion Threshold = Image.DynThreshold(Mean,5,"light");

Note the following:

• The size of the filter mask (in our case 11 × 11) is correlated with the size of the objects which have to be
found in the image. In fact, the sizes are proportional.

• The dynamic threshold selects the pixels with a positive gray value difference of more than 5 (brighter) than
the local environment (mask 11× 11).

8.4 Texture Transformation

Texture transformation is useful in order to obtain specific frequency bands in an image. Thus, a texture filter
detects specific structures in an image. In the following case this structure depends on the chosen filter; 16 are
available for the operator TextureLaws.

HImage Image("file_xyz");

HImage TT = Image.TextureLaws("ee",2,5);

HImage Mean = TT.MeanImage(71,71);

HRegion Reg = Mean.Threshold(30,255);

• The mean filter MeanImage is applied with a large mask size in order to smooth the “frequency” image.

• You can also apply several texture transformations and combine the results by using the operators AddImage
and MultImage.

8.5 Eliminating Small Objects

The morphological operator Opening eliminates small objects and smoothes the contours of regions.

...

segmentation(Image,&Seg);

HRegion Circle(100,100,3.5);

HRegion Res = Seg.Opening(Circle);

• The term segmentation() is an arbitrary segmentation step that results in an array of regions (Seg).

• The size of the mask (in this case the radius is 3.5) determines the size of the resulting objects.

• You can choose an arbitrary mask shape.

Part III

Programming With HALCON/.NET

Introducing HALCON/.NET 59

Chapter 9

Introducing HALCON/.NET

This chapter introduces you to HALCON/.NET. Chapter 10 on page 61 shows how to use it to create .NET appli-
cations, chapter 12 on page 81 contains additional information.

What is HALCON/.NET?

HALCON/.NET is HALCON’s interface to .NET programming languages, e.g., C# or Visual Basic .NET. It pro-
vides you with a set of .NET classes and controls.

Platform Independence

HALCON/.NET is highly platform-independent: It is written in C# but can be used in any .NET language. Like
.NET in general, it can be used under Windows and Linux, on 32-bit and 64-bit systems. In addition, successful
experiments with the .NET Core implementation of HALCON/.NET were performed on Arm-based platforms.

Moreover, not only can you use it on all these platforms, but you can also run an application created on one of
them on the others without having to recompile it. This is possible because applications written in .NET languages
are stored in a platform-independent intermediate language (IL), which is then compiled by the so-called common
language runtime (CLR) into platform-specific code.

.NET Core and .NET Framework

Basically, a .NET application is developed for one or more implementations of .NET like:

• .NET Core (and later versions starting with .NET 5)

• .NET Framework

• Mono

All .NET implementations listed above are supported. The interface for all of these implementations is the same
as well as their documented behavior. For users they mostly differ in terms of tooling and platform support. Most
of the relevant differences are documented in chapter 10 on page 61.

NuGet packages are provided for .NET Core, and assemblies for .NET Framework.

HDevEngine/.NET

By using the HDevEngine/.NET language bindings, you can execute HDevelop programs and procedures from a
.NET application. For more information, please refer to part VI on page 133.

HALCON/.NET XL and HDevEngine/.NET XL

Packages and assemblies are provided for both HALCON and HALCON XL. The packages for .NET Core are
available with XL as suffix, for example MVTec.HalconDotNet and MVTec.HalconDotNetXL. The assemblies
for .NET Framework are available with xl as suffix, for example halcondotnet.dll and halcondotnetxl.dll.

.N
E

T

60 Introducing HALCON/.NET

9.1 A First Example

This section demonstrates how to create a simple HALCON application with .NET Core. For a more comprehen-
sive description, see section 10.1 on page 61.

The task is to read an image and compute the number of connected regions in it, as illustrated in figure 9.1 on page
60

Figure 9.1: Left: Input image of a printed circuit board. Middle: Regions found by threshold, colored red. Right:
Connected regions, a result of connection.

1. Install HALCON 23.05

2. Install the .NET Core SDK for your system.

3. Run the following commands in a shell:

dotnet new console -n region_example

cd region_example

dotnet add package MVTec.HalconDotNet -v 23050

4. Change the content of Program.cs to:

using System;

using HalconDotNet;

namespace region_example

{

class Program

{

static void Main(string[] args)

{

HImage img = new HImage("pcb");

HRegion region = img.Threshold(0d, 122d);

int numRegions = region.Connection().CountObj();

Console.WriteLine("Number of Regions: " + numRegions);

}

}

}

5. To run the application, type the following command in the same shell:

dotnet run

As a result, you should see the following output ’Number of Regions: 43’.

Creating Applications With HALCON/.NET 61

Chapter 10

Creating Applications With
HALCON/.NET

10.1 Creating Applications With HALCON/.NET

For .NET Framework, the examples are given in C#, using Visual Studio under Windows as development environ-
ment. If programming constructs or activities differ in Visual Basic .NET or managed C++, this is noted at the first
occurrence.

For .NET Core, the examples are given in C# using the .NET Core SDK, usable on both Windows and Linux.
At the moment we do not officially support using the .NET Core interface with other languages, C# has been our
focus for testing and documentation.

How to create applications under Linux using Mono is described in section 12.2 on page 83. Many of the code
examples stem from the example Matching, which is provided in C# (%HALCONEXAMPLES%\c#), Visual Basic
.NET (%HALCONEXAMPLES%\vb.net), and managed C++ (%HALCONEXAMPLES%\cpp.net). An overview of the
provided example applications can be found in section 12.1 on page 81.

But before explaining how to create applications, we must take a brief look under the hood of .NET, particularly
at the dependency of applications on the .NET Framework.

10.2 .NET Development Environments

Chapter 10 on page 61 emphasized the platform-independence of .NET applications. However, applications still
depend on their target .NET runtime environment and for GUI applications, the corresponding implementations
for, e.g., Windows Forms or WPF.

There are two main environments, .NET Framework 2.0-4.8 and .NET Core 3.1, with the next versions being
named .NET 5 and .NET 6. .NET 6 delivers the final parts of the .NET unification plan that started with .NET
5. Generally, these dependencies are backwards compatible within a branch, e.g., an application targeting .NET
Framework 2.0 should run with all newer .NET Framework versions. It should still be possible to open a project
file for Visual Studio 2013 with Visual Studio 2019 as well. In addition, the NuGet packages have been tested in
applications targeting .NET 5 and .NET 6 and no compatibility or portability issues were found.

Table 10.1 on page 62 indicates the minimum requirements and capabilities of the different HALCON/.NET inter-
face variants.

The examples provided generally target the oldest supported environment. For example, Windows Forms applica-
tions target .NET Framework 2.0 and are shipped with Visual Studio 2013 versions that open in all newer versions
of Visual Studio.

The non-WPF C# examples also come with makefiles to support building via command line both with .NET
Framework under Windows or Mono under Linux. Source files are placed in a separate, shared source directory
next to the project or makefile directories. Some dedicated .NET Core examples are provided, which are suitable
for building via command line using the .NET Core SDK.

.N
E

T

62 Creating Applications With HALCON/.NET

Minimum
Development
Environment

HALCON/.NET Interface Minimum Runtime
Environment

Windows
Forms

WPF Linux
Support

Visual Studio
2013

%HALCONROOT%\bin\dotnet20 .NET Framework 2.0 Yes No Mono

Visual Studio
2013 a

%HALCONROOT%\bin\dotnet35 .NET Framework 3.5 Yes Yes Mono (no
WPF)

.NET Core 3.1
SDK
(Windows)b

MVTec.HalconDotNet (NuGet Package)
MVTec.HalconDotNet-Windows (NuGet
Package)

.NET Standard 2.0

.NET Core 3.1
No
Yes

No
Yes

Yes
No

.NET Core 3.1
SDK (Linux)

MVTec.HalconDotNet (NuGet Package) .NET Standard 2.0 No No Yes

a WPF support was still rudimentary in Visual Studio 2008 with limited designer support.
b If you want to use Visual Studio you will need at least version 2019.

Table 10.1: Properties of different HALCON/.NET interface variants.

10.3 Adding HALCON/.NET to an Application

10.3.1 Adding HALCON/.NET to a .NET Core Application

To leverage the cross-platform nature of .NET Core, the interface is offered in two package variants. Both of them
contain the complete HALCON/.NET and HDevEngine/.NET language bindings.

MVTec.HalconDotNet

This package targets .NET Standard 2.0 and can be used on all architectures supported by HALCON.

MVTec.HalconDotNet-Windows

This package targets .NET Core 3.1 and additionally includes Windows Forms and WPF controls for integrating
HALCON windows into GUI applications. This package can only be used on Windows since other .NET Core 3.1
implementations do not offer Windows Forms or WPF support.

Use the following command to add package references to your project:

dotnet add package <PACKAGE_NAME> -v 23050

While NuGet uses SemVer to version packages, HALCON versions are not SemVer compatible. To avoid unnec-
essary conflicts, .NET Core packages receive a SemVer-compatible version by combining the major, minor, and
revision into a new version, e.g.:

• HALCON Steady 22.11.1→ 22111.0.0

• HALCON Progress 22.11.0→ 22110.0.0

• Current HALCON version: 23.05.0→ 23050.0.0

HALCON/.NET is not a self-contained package but an interface to the native HALCON library. Therefore, the
package version used by your project has to match the installed HALCON version exactly.

Even for maintenance releases, which are backwards compatible at application level, mixing of binaries from
different releases is not recommended because the internal communication between HALCON/.NET and the native
HALCON library is not guaranteed to be always compatible. Therefore, the revision of the HALCON release is
also part of the SemVer major version. The SemVer minor and patch version are reserved for fully backwards-
compatible intermediate releases of the package itself. See section 10.5.0.3 on page 64 for updating dependencies.

To use the packages offline, download them from the NuGet website. Consider adding a nuget.config file to
your project. This helps to source it reliably from a file system.

10.3 Adding HALCON/.NET to an Application 63

<?xml version="1.0" encoding="utf-8"?>

<configuration>

<packageSources>

<add key="LocalHalconPackages" value="path/to/package" />

</packageSources>

</configuration>

When developing an application with HALCON XL, select the following XL packages:

• MVTec.HalconDotNetXL

• MVTec.HalconDotNetXL-Windows

For upgrading HALCON/.NET in relation to a HALCON upgrade, see section 10.5.0.3 on page 64.

10.3.2 Adding HALCON/.NET to a .NET Framework Application

You add HALCON/.NET to an application with the following steps:

For the first application, customize Visual Studio’s toolbox (see section 10.3.2.1 on page 63).

For each application, add a reference to HALCON/.NET (section 10.3.2.2 on page 63) and specify the namespace
(section 11.0.1 on page 65).

10.3.2.1 Customizing Visual Studio’s Toolbox

The HALCON/.NET assembly provides not only a class library but also one control: HSmartWindowControl (or
HSmartWindowControlWPF), which contains a HALCON graphics window for visualizing images and results.

The older control HWindowControl is still available for backwards compatibility but it is strongly advised against
using this control for new projects (see section 11.6 on page 77 for information about the differences).

You can add these controls to Visual Studio’s toolbox by performing the following steps. Note that the exact menu
names slightly differ in different versions of Visual Studio:

1. Right-click the toolbox and select Choose Items (Customize Toolbox in previous versions of Visual
Studio). This will open a dialog displaying all available .NET Framework components in a tab.

2. Click Browse, navigate to the directory %HALCONROOT%\bin\dotnet20 or %HALCONROOT%\bin\

dotnet35 and select halcondotnet.dll.

3. The icon of HSmartWindowControl and the older HWindowControl appear in the toolbox.

HALCON XL applications:
Please note that you should use HALCON XL only when you need its features.

!When developing an application with HALCON XL, select halcondotnetxl.dll instead of
halcondotnet.dll. In the toolbox, the control appears with the same name but with a different icon.
You can add both HALCON versions to the toolbox but only one of them to an application.

10.3.2.2 Adding a Reference to HALCON/.NET

In many applications, you will use at least one instance of HSmartWindowControl to visualize results. By adding
the control to the form (as described in section 11.7 on page 78), you automatically create a reference to the
assembly halcondotnet.dll.

If you do not want to use HSmartWindowControl, add a reference as follows:

1. Right-click References in the Solution Explorer and select Add Reference.

2. Click Browse, navigate to the subdirectory %HALCONROOT%\bin\dotnet20 or %HALCONROOT%\bin\

dotnet35 and select the assembly halcondotnet.dll.

.N
E

T

64 Creating Applications With HALCON/.NET

HALCON XL applications:
Please note that you should use HALCON XL only when you need its features.

!When developing an application with HALCON XL, select halcondotnetxl.dll instead of
halcondotnet.dll. If you already added a reference to the HALCON version, simply delete this refer-
ence and add one to halcondotnetxl.dll.

10.4 Deploying an Application

.NET applications typically include all .NET package and assemby dependencies in their build output, hence de-
ployment is simply a copy operation. Depending on whether the build type is self-contained or not, the appropriate
.NET runtime must be installed on the destination machine as well.

However, native DLLs are resolved at runtime from the system environment. Therefore, a matching HALCON
version and license must be installed on the destination computer, and the environment variables HALCONROOT and
HALCONARCH must be set correctly (see the Installation Guide,section A.4 on page 39).

10.5 Using a Newer HALCON/.NET Release

10.5.0.3 .NET Core

.NET Core projects resolve a specific version the moment you add the package. If you want to update to a newer
HALCON version, for example from 22.11. to 23.05.0, you must change the version specified in your project.

Note that 20.11.2 is a breaking change compared to 20.11.1, which can also be seen in the HALCON SemVer
major version change from 20111 to 20112.

For example from 22.11. to 23.05.0, change your project .csproj from:

<PackageReference Include="MVTec.HalconDotNet" Version="2211.0.0" />

to:

<PackageReference Include="MVTec.HalconDotNet" Version="23050.0.0" />

10.5.0.4 .NET Framework

halcondotnet.dll is not a self-contained library but an interface to the native HALCON library. Therefore, the
library version used by your project has to match the installed HALCON version exactly.

Even for maintenance releases, which are backwards compatible at application level, mixing of binaries from
different releases is not recommended because the internal communication between HALCON/.NET and the native
HALCON library is not guaranteed to be always compatible.

Applications that use HALCON/.NET have local copies of the corresponding assemblies. After installing a newer
release of HALCON, these applications would therefore still use their old HALCON assemblies. To use the new
halcondotnet.dll re-build your project, Visual Studio-> Solution -> Rebuild Solution.

If you want to replace the halcondotnet.dll without recompiling the application, you need to both manually
replace the halcondotnet.dll with the newly installed one, and update the application’s app.config, to in-
form the executable of the new halcondotnet.dll. Do this by copying either bin\dotnet20\app.config
or bin\dotnet35\app.config into the directory containing the halcondotnet.dll, and rename it to
<application_name>.exe.config.

HALCON/.NET Interface 65

Chapter 11

HALCON/.NET Interface

11.0.1 Specifying the Namespace

To be able to use the HALCON/.NET classes without prefixing them with their namespace, we recommend that
you specify this namespace at the beginning of each source file (for example, see the example MatchingForm.cs)
by adding the following line:

using HalconDotNet;

Visual Basic .NET applications: The corresponding Visual Basic .NET code is (for example, see
MatchingForm.vb):

Imports HalconDotNet

11.1 Using HALCON/.NET Classes

In HALCON/.NET, you call HALCON operators via instances of classes. The following code grabs the first image
of an image sequence and displays it in the graphics window of HSmartWindowControl:

private HWindow window;

private HFramegrabber framegrabber;

private HImage img;

window = windowControl.HalconWindow;

framegrabber = new HFramegrabber("File", 1, 1, 0, 0, 0, 0, "default",

-1, "default", -1, "default",

"board/board.seq", "default", 1, -1);

img = framegrabber.GrabImage();

img.GetImagePointer1(out ImgType, out imgWidth, out imgHeight);

window.SetPart(0, 0, imgHeight - 1, imgWidth - 1);

img.DispObj(window);

The operator GrabImage is called via an instance of HFramegrabber. As an experienced HALCON user you will
perhaps have identified the constructor of HFramegrabber as a call to the operator OpenFramegrabber.

Below, we take a closer look at:

• how to call operators via HALCON/.NET’s classes (section 11.1.2 on page 66)

• construction, initialization, and destruction of class instances (section 11.1.3 on page 67)

• overloads of operator calls (section 11.1.4 on page 69)

But first, we give you an overview of the provided online help.

.N
E

T

66 HALCON/.NET Interface

11.1.1 Online Help

The main source of information about HALCON/.NET operators and classes is the reference manual, which
is available as HTML and PDF version (note that the latter is only provided in HDevelop syntax). Un-
der Windows, you can open both versions via the Start Menu. Under Linux, open index.html in the di-
rectory $HALCONROOT/doc/html/reference/operators, and reference_hdevelop.pdf in the directory
$HALCONROOT/doc/pdf/reference, respectively. You can access them also via HDevelop’s Help Browser.

The Reference Manual describes the functionality of each HALCON operator and its signatures, i.e., via which
classes it can be called with which parameters. Furthermore, it gives an overview of the provided classes (which
does not list all methods, however, only the HALCON operators).

Online help is also available in Visual Studio:

• When you type a dot (.) after the name of a class or class instance, the automatic context help (IntelliSense)
lists all available methods.

• Similarly, when you type the name of a method, its signature(s) is (are) listed.

• For parameters of HALCON operators, a short description and the so-called default value is shown. Note that
HALCON operators do not have “real” default parameter values, i.e., you cannot leave out a parameter and
let HALCON use a default value. Instead, the listed default value is a typical value chosen for the parameter.

• The Object Browser lists all HALCON/.NET classes with their methods, including a short description.

11.1.2 Calling HALCON Operators

Via which classes you can call a HALCON operator is listed in the reference manual. Figure 11.1 on page 66
shows the corresponding part of the description of the operator GrabImage:

static void HOperatorSet.GrabImage (out HObject image, HTuple acqHandle)

void HImage.GrabImage (HFramegrabber acqHandle)

HImage HFramegrabber.GrabImage ()

image (output_object) . image ; HImage (byte / uint2)

acqHandle (input_control) . framegrabber ; HFramegrabber / HTuple (IntPtr)

Figure 11.1: The head and parts of the parameter section of the reference manual entry for GrabImage.

As you can see, the operator can be called via three classes: HOperatorSet, HImage, and HFramegrabber. The
first variant, via HOperatorSet, is mainly used for the export of HDevelop programs (see section 12.3 on page
84).

For normal applications, we recommend calling operators via the other classes, in the example HImage and
HFramegrabber as in the following code example:

HImage Image1;

HImage Image4 = new HImage();

HFramegrabber Framegrabber = new HFramegrabber("File", 1, 1, 0, 0, 0, 0, "default", -1,

"default", -1, "default", "board/board.seq", "default", -1, -1);

Image1 = Framegrabber.GrabImage();

HImage Image3 = null;

Note that in the call via HFramegrabber the grabbed image is the return value of the method, whereas the call via
HImage has no return value and the calling class instance is modified instead. Usually, calling class instances are
not modified by an operator call - with the exception of “constructor-like” operator calls as in the example above.

Some operators like CountSeconds are available as class methods, i.e., you can call them directly via the class
and do not need an instance:

11.1 Using HALCON/.NET Classes 67

double s1, s2;

s1 = HSystem.CountSeconds();

In the reference manual, these operator calls start with the keyword static:

static void HOperatorSet.CountSeconds (out HTuple seconds)

static double HSystem.CountSeconds ()

Figure 11.2: The head of the reference manual entry for CountSeconds.

11.1.3 From Declaration to Finalization

During the lifecycle of an object, i.e., from declaration to finalization, different amounts of memory are allocated
and released.

The following declaration just declares a variable of the class HImage that does not yet refer to any object:

HImage Image1;

In this state, you cannot use the variable to call operators; depending on the programming language, you might not
even be able to use it as an output parameter (e.g., in Visual Basic 2005). However, you can assign image objects
to the variable, e.g., from the return value of an operator:

Image1 = Framegrabber.GrabImage();

You can also initialize a variable when declaring it:

HImage Image2 = Framegrabber.GrabImage();

HImage Image3 = null;

Note that you can check the initialization state of a class instance with the method IsInitialized.

11.1.3.1 Constructors

In contrast, the following declaration calls the “empty” constructor of the class HImage, which creates an unititial-
ized class instance:

HImage Image4 = new HImage();

This class instance can be used to call “constructor-like” operators like GrabImage, which initializes it with a
grabbed image:

Image4.GrabImage(Framegrabber);

Besides the empty constructor, most HALCON/.NET classes provide one or more constructors that initialize the
created object based on HALCON operators. For example, HImage provides a constructor based on the operator
ReadImage:

HImage Image5 = new HImage("fuse");

You can check which constructors are provided via the online help:

.N
E

T

68 HALCON/.NET Interface

• The reference manual pages for the classes don’t list the constructors themselves but the operators they are
based on. The constructor then has the same signature as the operator (minus the output parameter that
corresponds to the class, of course).

• The online help in Visual Studio lists the constructors but not the operators they are based on.

11.1.3.2 Finalizers

The main idea behind memory management in .NET is that the programmer does not worry about it and lets the
garbage collector delete all objects that are not used anymore. HALCON/.NET fully complies to this philosophy
by providing corresponding finalizers for all classes so that even unmanaged resources, e.g., a connection to an
image acquisition device, are deleted correctly and automatically.

For most classes, the finalizer automatically calls suitable operators like CloseFramegrabber to free resources.
Which operator is called is listed in the reference manual page of a class (for example, see the entry for
HFramegrabber). This operator cannot be called via the class, as can be seen in the corresponding reference
manual entry:

static void HOperatorSet.CloseFramegrabber (HTuple acqHandle)

void HFramegrabber.CloseFramegrabber ()

Figure 11.3: The head of the reference manual entry for CloseFramegrabber.

You do not even need to call such an operator if you, e.g., want to re-open the connection with different parameters,
because this is done automatically.

Do not call Close or Clear operators via HOperatorSet when using the normal classes like HFramegrabber.!

11.1.3.3 Garbage Collection

As remarked above, the .NET philosophy is to let the garbage collector remove unused objects. However, because
the garbage collector deletes unused objects only from time to time, the used memory increases in the meantime.
Even more important is that, to the garbage collector, HALCON’s iconic variables (images, regions, ...) seem to
be rather “small”, because they only contain a reference to the (in many cases rather large) iconic objects in the
database. Thus, the garbage collector may not free such variables even if they are not used anymore.

Therefore, you might need to force the removal of (unused) objects. There are two ways to do this:

• Call the garbage collector manually. In the example Matching, this is done after each processing run in the
timer event:

private void Timer_Tick(object sender, System.EventArgs e)

{

Action();

GC.Collect();

GC.WaitForPendingFinalizers();

}

• Dispose of individual objects manually by calling the method Dispose:

HImage Image = new HImage("fuse");

...

Image.Dispose();

Besides reducing memory consumption, another reason to manually dispose of objects is to free resources, e.g.,
close a connection to an image acquisition device or a serial interface.

HTuple instances that contain handles also need to be disposed if the referenced resource is to be released in a
deterministic way.

11.1 Using HALCON/.NET Classes 69

Please note that HALCON operators always create a new object instance for output parameters and return values
(but not in the “constructor-like” operator calls that modify the calling instance). If the variable was already
initialized, its old content (and the memory allocated for it) still exists until the garbage collector removes it. If
you want to remove it manually, you must call Dispose before assigning an object to it.

11.1.4 Operator Overloads

Some classes overload standard operators like + (addition) to call HALCON operators. The following line, e.g.,
adds two images by internally calling AddImage:

Image5 = Image1 + Image2;

Note that operator overloads are not available in Visual Basic .NET.
!The following tables list the currently available operator overloads.

Operator overloads for HImage
- (unary) inverts an image
+ (image) adds two images
- (image) subtracts image2 from image1
∗ (image) multiplies two images
+ (scalar) adds a constant gray value offset
- (scalar) subtracts a constant gray value offset
∗ (scalar) scales an image by the specified factor
/ (scalar) scales an image by the specified divisor
>= (image) segments an image using dynamic threshold
<= (image) segments an image using dynamic threshold
>= (scalar) segments an image using constant threshold
<= (scalar) segments an image using constant threshold
& (region) reduces the domain of an image

Operator overloads for HRegion
& (region) returns the intersection of regions
| (region) returns the union of regions
/ (region) returns the difference of regions
! (unary) returns the complement of the region (may be infinite)
& (image) returns the intersection of the region and the image domain
+ (region) returns the Minkowski addition of regions
- (region) returns the Minkowski subtraction of regions
+ (scalar) dilates the region by the specified radius
- (scalar) erodes the region by the specified radius
+ (point) translates the region
∗ (scalar) zooms the region
- (unary) transposes the region

Operator overloads for HFunction1D
+ (scalar) adds a constant offset to the function’s Y values
- (scalar) subtracts a constant offset from the function’s Y values
- (unary) negates the Y values of the function
∗ (scalar) scales the function’s Y values
/ (scalar) scales the function’s Y values
∗ (function) composes two functions (not a point-wise multiplication)
! (unary) calculates the inverse of the function

.N
E

T

70 HALCON/.NET Interface

11.2 Working With Tuples

A strength of HALCON is that most operators automatically work with multiple input values (tuple values). For
example, you can call the operator AreaCenter with a single or with multiple input regions; the operator automat-
ically returns the area and center coordinates of all passed regions. Analogously, if you call GenRectangle1 with
multiple values for the rectangle coordinates, it creates multiple regions.

The following sections provide more detailed information about

• how to find out whether an operator can be called in tuple mode (section 11.2.1 on page 70)

• tuples of iconic objects (section 11.2.2 on page 71)

• tuple of control values (section 11.2.3 on page 71)

11.2.1 Calling HALCON Operators with Single or Multiple Values

You can check whether an operator also works with tuples in the reference manual. Below, e.g., we show the
relevant parts of the operators AreaCenter and GenRectangle1.

As you see, the iconic classes like HRegion automatically handle multiple values; whether such a parameter accepts
/ returns multiple values is not visible from the signature but only in the parameter section: Here, an appended
(-array) (in the example: HRegion(-array)) signals that the parameter can contain a single or multiple values.

static void HOperatorSet.AreaCenter (HObject regions, out HTuple area, out HTuple row,
out HTuple column)

HTuple HRegion.AreaCenter (out HTuple row, out HTuple column)

int HRegion.AreaCenter (out double row, out double column)

regions (input_object) . region(-array) ; HRegion

area (output_control) . integer(-array) ; HTuple (int / long)

row (output_control) . point.y(-array) ; HTuple (double)

column (output_control) . point.x(-array) ; HTuple (double)

static void HOperatorSet.GenRectangle1 (out HObject rectangle, HTuple row1, HTuple column1,
HTuple row2, HTuple column2)

public HRegion (HTuple row1, HTuple column1, HTuple row2, HTuple column2)

public HRegion (double row1, double column1, double row2, double column2)

void HRegion.GenRectangle1 (HTuple row1, HTuple column1, HTuple row2, HTuple column2)

void HRegion.GenRectangle1 (double row1, double column1, double row2, double column2)

rectangle (output_object) . region(-array) ; HRegion

row1 (input_control) . rectangle.origin.y(-array) ; HTuple (double / int / long)

column1 (input_control) . rectangle.origin.x(-array) ; HTuple (double / int / long)

row2 (input_control) . rectangle.corner.y(-array) ; HTuple (double / int / long)

column2 (input_control) . rectangle.corner.x(-array) ; HTuple (double / int / long)

In contrast, control parameters show by their data type whether they contain a single or multiple values: In the first
case, they use basic data types like double, in the second case the HALCON/.NET class HTuple. Thus, you can
call GenRectangle1 via HRegion in two ways, either by passing doubles or HTuples (here using the constructor
form):

HRegion SingleRegion = new HRegion(10.0, 10.0, 50.0, 50.0);

HRegion MultipleRegions = new HRegion(new HTuple(20.0, 30.0), new HTuple(20.0, 30.0),

new HTuple(60.0, 70.0), new HTuple(60.0, 70.0));

11.2 Working With Tuples 71

Similarly, AreaCenter can be called in two ways:

double Area, Row, Column;

HTuple Areas, Rows, Columns;

Area = SingleRegion.AreaCenter(out Row, out Column);

Areas = MultipleRegions.AreaCenter(out Rows, out Columns);

Below, we provide additional information about iconic tuples (section 11.2.2 on page 71) and control tuples (sec-
tion 11.2.3 on page 71).

11.2.2 Iconic Tuples

The iconic classes HImage, HRegion, and HXLD can contain single or multiple objects. To process all elements of
a tuple you first query the number of elements with the operator CountObj

int NumRegions = MultipleRegions.CountObj();

and then access elements either with the HALCON operator SelectObj or (when using C#) with the operator []:

for (int i=1; i<=NumRegions; i++)

{

HRegion Region = MultipleRegions[i];

...

}

Note that in iconic tuples element indices start with 1.
!You can create or extend iconic tuples with the HALCON operator ConcatObj:

HRegion ThreeRegions = SingleRegion.ConcatObj(MultipleRegions);

11.2.3 Control Tuples and the Class HTuple

For control tuples, HALCON/.NET provides the class HTuple. Instances of HTuple can contain elements of the
types double, int, string, and HHandle. They can also contain a mixture of element types.

The following sections describe

• how to access tuple elements (section 11.2.3.1 on page 71)

• how to create tuples (section 11.2.3.2 on page 72)

• the automatic cast methods and how to resolve ambiguities caused by the casts (section 11.2.3.3 on page 72)

• HALCON operators for processing tuples (section 11.2.3.4 on page 73)

• proved overloads for arithmetic operations (section 11.2.3.5 on page 74)

11.2.3.1 Accessing Tuple Elements

To process all elements of a tuple, you first query its length via the property Length:

int TupleLength = Areas.Length;

You can access tuple elements with the operator []:

.N
E

T

72 HALCON/.NET Interface

for (int i=0; i<TupleLength; i++)

{

double Element = Areas[i];

...

}

Note that you get an exception if you try to read a non-existing tuple element or if you try to assign an element to
a variable with a different type without cast.

11.2.3.2 Creating Tuples

The class HTuple provides many different constructors (see the Visual Studio’s Object Browser for a list). The
following line creates an int tuple with a single value:

HTuple Tuple1 = new HTuple(1);

In contrast, the following line creates a double tuple:

HTuple Tuple2 = new HTuple(1.0);

You can also pass multiple values to a constructor. Note that when mixing double and int values as in the
following line, a double tuple is created:

HTuple Tuple3 = new HTuple(1.0, 2);

In contrast, when the list of values also contains a string, a mixed type tuple is created, in which the second
value is stored as an int:

HTuple Tuple4 = new HTuple(1.0, 2, "s");

The type of a tuple or of a tuple element can be queried via its property Type:

HTupleType TupleType = Tuple4.Type;

HTupleType TupleElementType = Tuple4[1].Type;

You can concatenate tuples very simply by passing them in a constructor:

HTuple Tuple5 = new HTuple(Tuple2, Tuple3);

You can also append elements to a tuple by writing into a non-existing element:

Tuple3[2] = 3;

11.2.3.3 Casts, Ambiguities, Unexpected Results

The class HTuple provides many implicit cast methods so that you can intuitively use the basic data types in most
places. For example, the line

double Element = Areas[i];

automatically casts the element, which is in fact an instance of the class HTupleElement, into a double.

Similarly, basic types are automatically casted into instances of HTuple. The drawback of the casts is that the
compiler often cannot decide whether you want to use the simple or the tuple version of an operator and issues

11.2 Working With Tuples 73

a corresponding error. For example, if you used the following line, the values can either be casted from int to
double or to HTuple:

// HRegion SingleRegion = new HRegion(10, 10, 50, 50);

You can resolve the ambiguity very simply by appending .0 to the first parameter:

HRegion SingleRegion = new HRegion(10.0, 10.0, 50.0, 50.0);

The example Matching contains two other cases of ambiguities, both arising because basic-type and HTuple

parameters are mixed in the same call. In the first, the ambiguity is solved by explicitly casting the double

parameters into instances of HTuple:

private double row, column;

HTuple angleCheck;

HHomMat2D matrix = new HHomMat2D();

matrix.VectorAngleToRigid(new HTuple(row), new HTuple(column), new HTuple(0.0),

result.GetGenericShapeModelResult(0, "row"),

result.GetGenericShapeModelResult(0, "column"),

angleCheck);

In the second case, the instances of HTuple (which only contain single values) are explicitly casted into doubles
by using the property D, which returns the value of the first element as a double (actually, it is a shortcut for
tuple[0].D):

private double rectPhi, rectLength1, rectLength2;

HTuple rect1RowCheck, rect1ColCheck;

rectangle1.GenRectangle2(rect1RowCheck.D, rect1ColCheck.D,

rectPhi + angleCheck.D,

rectLength1, rectLength2);

With similar properties, you can cast tuple elements into the other basic types. Note, however, that you get an
exception if you try to cast an element into a “wrong” type.

In contrast to input parameters, output parameters are not automatically casted. Sometimes, this leads to unex-
pected results. In the following code, e.g., doubles are used for the output parameters and the return value in a
call to AreaCenter with a tuple of regions:

HRegion MultipleRegions = new HRegion(new HTuple(20.0, 30.0), new HTuple(20.0, 30.0),

new HTuple(60.0, 70.0), new HTuple(60.0, 70.0));

double Area, Row, Column;

HTuple Areas, Rows, Columns;

Area = MultipleRegions.AreaCenter(out Row, out Column);

Consequently, only the area and the center of the first region are returned. The same happens if you assign the
return value to an HTuple, but still pass doubles for the output parameters:

Areas = MultipleRegions.AreaCenter(out Row, out Column);

In contrast, if you pass HTuples for the output parameters and assign the return value to a double, the operator
returns the center coordinates of all regions but only the area of the first region:

Area = MultipleRegions.AreaCenter(out Rows, out Columns);

11.2.3.4 HALCON Operators for Processing Tuples

HALCON provides many operators for processing tuples. In the reference manual, these operators can be found in
the chapter “Tuple”. An overview of these operators is given in the HDevelop User’s Guide in chapter 8 on page

.N
E

T

74 HALCON/.NET Interface

247. Note that instead of the operator name, the name of the corresponding HDevelop function is used, which
omits the Tuple and uses lowercase characters, e.g., rad instead of TupleRad.

11.2.3.5 Operator Overloads

For the basic arithmetic operations, HALCON/.NET provides operator overloads. For example, the operator +
automatically calls the HALCON operator TupleAdd.

11.3 Working With Vectors

HALCON/.NET provides the class HVector for the use of variables of type ’vector’ of the HDevelop language,
i.e., containers that can hold an arbitrary number of elements of the identical data type (i.e., tuple, iconic object,
or vector) and dimension. The type of a vector, i.e., its dimension and the type of its elements is defined when
initializing the vector instance and cannot be changed during its lifetime. A one-dimensional vector may be a
vector of tuples or a vector of iconic objects. A two-dimensional vector may be a vector of vectors of tuples or
a vector of vector of iconic objects, and so on. Instances of vectors can be created from the following derived
classes:

• Class HObjectVector for handling vectors of iconic objects

• Class HTupleVector for handling vectors of tuples

In the following some basic information about the use of vectors in HALCON/.NET is given when using C#.

Construction of Vectors

As already mentioned, an instance of a vector can only be created from HObjectVector or HTupleVector.

// Create a vector of iconic objects

HObjectVector vectorObj;

// Create a vector of tuples

HTupleVector vectorTup;

The vector type cannot be changed after its construction. Thus, a tuple cannot be assigned to a vector of iconic
objects and vice versa.

You may also create a multi-dimensional vector, i.e., a vector of vectors and so on, by specifying the number of
dimensions in brackets. However, the dimension of a vector has to remain constant within the program and cannot
be changed. The following code line describes how to create a vector of two dimensions, i.e., a vector of vectors
of tuples.

HObjectVector vectorObjMulti = new HObjectVector(2);

Note that the vectors created by these calls are still empty. How to access and set vector elements is described
below.

Accessing and Setting Vector Elements

When setting or accessing an element of a vector you have to differ between vectors of type HObjectVector and
HTupleVector. Elements of vectors of iconic objects can be accessed with .O whereas elements of vectors of
tuples can be accessed with .T.

// Access an element of a one-dimensional HObjectVector

vectorObj[0].O;

// Access an element of a one-dimensional HTupleVector

vectorTup[0].T;

11.4 Error Handling 75

The specified index in square brackets defines the element to be accessed. If a subelement of a multi-dimensional
vector is to be accessed, you have to use the indices of the corresponding subvector and its subelement instead.

// Access a subelement of a two-dimensional HObjectVector

vectorObjMulti[0][1].O;

When setting a vector element the expression for accessing a vector element is needed as reference to the HObject
or HTuple, respectively. The value to be set must be specified on the right side of the assignment.

// Set an element of a one-dimensional HObjectVector

HImage image = new HImage("Image1");

vectorObj[0].O = image;

// Set an element of a HTupleVector

HTuple tuple = new HTuple(1,2);

vectorTup[1].T = tuple;

In the example code the image is copied and set as the first element of vectorObj. The tuple is also copied but set
as the second vector element of vectorTup.

Setting a subelement of a multi-dimensional vector can be done analogously to setting an element in a one-
dimensional vector when using the corresponding indices of the subvector(s) and its subelement.

If a non-existing vector element is set or accessed, the vector is automatically enlarged and filled with empty
elements if necessary.

Destruction of Vectors

If a HObjectVector or HTupleVector is not needed anymore for further processing its contents should be cleared
with .Dispose().

vectorObj.Dispose();

Additional Information

In addition to accessing and setting the elements of vectors, HObjectVector and HTupleVector provide further
functionalities for the use of HALCON vectors such as inserting and removing vector elements or concatenation
of vectors. For more details on the provided vector functionality you may use the automatic context help in Visual
Studio, IntelliSense.

11.4 Error Handling

The .NET programming languages each offer a mechanism for error handling. In C# and managed C++, you use
try...catch blocks. Within this standard mechanism, HALCON/.NET offers its special exceptions:

• HOperatorException is raised when an error occurs within a HALCON operator.

• HTupleAccessException is raised when an error occurs upon accessing a HALCON tuple.

The following code shows how to catch the error that occurs when the operator ReadImage is called with a wrong
image file name. Then, a message box is shown that displays the error code in the caption and the HALCON error
message:

.N
E

T

76 HALCON/.NET Interface

HImage Image;

try

{

Image = new HImage("unknown");

}

catch (HOperatorException exception)

{

MessageBox.Show(exception.Message, "HALCON error # " + exception.GetErrorCode());

}

All HALCON error codes and their corresponding error messages are summarized in the Extension Package Pro-
grammer’s Manual, appendix A on page 105.

The HSmartWindowControl and HSmartWindowControlWPF provide the event HErrorNotify. This event al-
lows the user to react to errors that take place internally within the control, but can have external causes, like for
example an unplugged dongle or a missing license file.

11.5 Visualization

Applications can use an instance of HSmartWindowControl to display results. However, this is only available for
.NET Framework and the MVTec.HalconDotNet-Windows .NET Core packages. How to configure this control
is described in section 11.7 on page 78. The actual display operators, however, do not use the control but the
HALCON graphics window (class HWindow) encapsulated inside. You can access the graphics window via the
property HalconWindow of HSmartWindowControl:

private HWindow window;

private void Form1_Load(object sender, System.EventArgs e)

{

window = windowControl.HalconWindow;

}

In the code above, the variable for the instance of HWindow was declared globally and initialized in the event Load
of the form.

You can configure the display parameters like pen color or line width with the operators in the reference manual
chapter “Graphics . Parameters”:

window.SetDraw("margin");

window.SetLineWidth(3);

Images and other iconic objects are displayed with the operator DispObj, which can be called via the object to
display with the window as parameter or vice versa:

img.DispObj(window);

More display operators, e.g., to display lines or circles, can be found in the reference manual chapter “Graphics .
Output”.

Instead of (or in addition to) using HSmartWindowControl, you can also open a HALCON graphics windows
directly with the operator OpenWindow:

HWindow ZoomWindow = new HWindow(0, 0, width, height, 0, "visible", "");

In the code above, the window was opened “free-floating” on the display. You can also open it within another GUI
element by passing its handle in the parameter fatherWindow.

Before displaying anything in the graphics window, you should set the image part to display with the operator
SetPart. In the example code below, the opened window is used to display a zoomed part of the image:

11.6 Window Controls for Visualization 77

ZoomWindow.SetPart(row1, col1, row1+height-1, col1+width-1);

More information about visualization in general can be found in the Solution Guide I, chapter 21 on page 223.
Note that in this manual, the HDevelop version of the display operators is used, i.e., with the prefix dev_, e.g.,
dev_open_window instead of OpenWindow.

11.6 Window Controls for Visualization

Note that at the time of writing Visual Studio Designer support for .NET Core is not mature yet. There are some
workarounds and a preview of the .NET Core Windows Forms Designer. Also, you have the option to manually
edit the relevant files. The following documentation is explained using Visual Studio and .NET Framework, the
same application functionality is possible in .NET Core.

Depending on which graphical subsystem a project is based on, a specific window control is available in Visual
Studio’s toolbox.

• HSmartWindowControl (Windows Forms), and

• HSmartWindowControlWPF (WPF).

See section 12.2.4 on page 84 for information about other GUI libraries.

The smart window control provides several advantages over HWindowControl:

• It is used like any other control (e.g., it can be embedded in TabControls or ScrollViewers, or overlaid
with other controls).

• Predefined mouse interaction is provided (moving of the window contents and zooming using the mouse
wheel). The view can be reset by double-clicking the window.

• The control automatically rescales without flickering.

In contrast to HSmartWindowControlWPF, a callback is required for HSmartWindowControl in order to enable
zooming using the mouse wheel:

private void WindowControl_Load(object sender, EventArgs e)

{

this.MouseWheel += my_MouseWheel;

}

In addition, you need to transform the mouse coordinates, so that they are relative to the upper left corner of the
HSmartWindowControl.

private void my_MouseWheel(object sender, MouseEventArgs e)

{

Point pt = windowControl.Location;

MouseEventArgs newe = new MouseEventArgs(e.Button, e.Clicks,

e.X - pt.X, e.Y - pt.Y, e.Delta);

windowControl.HSmartWindowControl_MouseWheel(sender, newe);

}

Using the smart window control, the following events are triggered and can be reacted to:

• Click

• GotFocus, LostFocus

• MouseEnter, MouseLeave, MouseHover

• Resize, SizeChanged

• KeyDown, KeyUp, KeyPress

Not all operators can be used with the smart window control. The following operators are not supported:

.N
E

T

78 HALCON/.NET Interface

Figure 11.4: Adapting the properties of HSmartWindowControlWPF.

• draw_nurbs, draw_nurbs_mod, draw_nurbs_interp, draw_nurbs_interp_mod

• drag_region1, drag_region2, drag_region3

Instead, use drawing objects.

In the following sections, the term HSmartWindowControl will be used for simplicity. Read it as
HSmartWindowControlWPF if your project is based on WPF. The same applies to the older HWindowControl
correspondingly.

11.7 Adding and Customizing HSmartWindowControl for the Visual-
ization

In most applications you want to visualize at least some results. Then, you start by adding HSmartWindowControl
to the form by double-clicking the corresponding icon in the toolbar. An empty (black) window appears (see
figure 11.4 on page 78).

HALCON XL applications:
Please note that you should use HALCON XL only when you need its features.!
If you already added the HALCON version of the control, but now want to use HALCON XL, simply delete the
reference to halcondotnet.dll in the Solution Explorer and add a reference to halcondotnetxl.dll instead.

If you want to fit an image automatically without the need to double click, you can use the operator SetPart to
adjust the part to the size of the last image displayed:

img.DispObj(window);

The properties specific to this control are listed below in alphabetical order. They can be adapted in the Properties
window (see figure 11.4 on page 78). Note that some properties are only available for HSmartWindowControlWPF
elements. All properties of the HSmartWindowControlWPF support data binding.

Do not modify the “Brush” properties in Visual Studio. They are disabled for HSmartWindowControlWPF to
prevent undesired side-effects.

HColor

Specifies the color of HRegion and HXLDCont objects.

11.7 Adding and Customizing HSmartWindowControl for the Visualization 79

HColored

Specifies the colors for displaying multiple HRegion or HXLDCont objects in different colors.

HDisableAutoResize

If set to true, images are not automatically scaled when they are displayed.

HDisplayCurrentObject

Displays the assigned HImage or HObject.

HDoubleClickToFitContent

If set to true (the default), double clicking resizes the content of the HSmartWindowControl to fit the size
of the control. If the HKeepAspectRatio is also set to true, the contents are rescaled so that the aspect ratio
is maintained.

HDraw

Specifies the fill mode of HRegion objects. If HDraw is set to ’fill’, output regions are filled, if set to
’margin’, only contours are displayed.

HDrawingObjectsModifier

Specifies the modifier key to interact with drawing objects. If a modifier key is set, the user can only interact
with drawing objects while keeping the modifier key pressed. This is especially useful when interacting with
XLD drawing objects. By default, it is set to None. Other possible values are Alt, Ctrl, or Shift.

HFont

Specifies the font for displaying messages in the HSmartWindowControlWPF.

HImagePart

Specifies the image part of the corresponding HALCON window. Note that the part is specified with the
values X, Y, Width, and Height, whereas the corresponding operator SetPart expects the four corner
points. Note that you can modify the displayed part in your application at any time, e.g., to display a zoomed
part of the image. See section 11.5 on page 76 for more information about actually visualizing results.

HKeepAspectRatio

If set to true (the default), the content of the HSmartWindowControl keeps its aspect ratio when the control
is resized or zoomed. The aspect ratio is the quotient Width/Height set at design time with HImagePart.

HLineStyle

Specifies the contour pattern of HRegion and HXLDCont objects.

HLineWidth

Specifies the contour thickness of HRegion and HXLDCont objects.

HMoveContent

If set to true (the default), the contents of the HALCON window can be dragged using the mouse.

HZoomContent

Specifies the behavior of the mouse wheel. If set to WheelForwardZoomsIn (the default), the contents
of the HALCON window is zoomed in and out when moving the mouse wheel forwards and backwards,
respectively. Setting the property to WheelBackwardZoomsIn reverses the behavior. If set to Off, zooming
using the mouse wheel is disabled.

HZoomFactor

Specifies the step size when zooming with the mouse wheel. The default is 1.41. Values must be greater
than 1 and less or equal to 100. A higher value leads to faster zooming.

The HSmartWindowControlWPF can be used to implement the Model-View-Viewmodel (MVVM) pattern, as all
properties of the control support data binding. By adding objects to the Items collection or setting the ItemsSource
property you can specify what the control should display, also in pure XAML code. The following example
illustrates how to show an image, color a region in “magenta”, and display a text message:

.N
E

T

80 HALCON/.NET Interface

<ha:HSmartWindowControlWPF HDraw="fill">

<!--Iconic items can be added using HIconicDisplayObjectWPFs-->

<ha:HIconicDisplayObjectWPF IconicObject="{Binding DisplayImage}"/>

<!--Also with individual drawing properties-->

<ha:HIconicDisplayObjectWPF IconicObject="{Binding DisplayRegion}"

HDraw="margin" HColor="magenta"/>

<!--Messages can be displayed using HMessageDisplayObjectWPFs-->

<ha:HMessageDisplayObjectWPF HMessageText="{Binding ImageName}"/>

</ha:HSmartWindowControlWPF>

Note that DisplayImage, DisplayRegion and ImageName have to exist in the DataContext of the
HSmartWindowControlWPF.

Additional Information 81

Chapter 12

Additional Information

This chapter provides additional information for developing applications with HALCON/.NET:

• Section 12.1 on page 81 gives an overview of the available example applications.

• Section 12.2 on page 83 explains how to use HALCON/.NET applications under Linux using Mono.

• Section 12.3 on page 84 shows how to use HDevelop programs or procedures in your .NET application.

• Section 12.4 on page 85 contains information to keep in mind if your environment allows remote access.

12.1 Provided Examples

The following sections briefly describe the provided example applications for

• C# (section 12.1.1 on page 81)

• Visual Basic .NET (section 12.1.2 on page 82)

• (managed) C++ (section 12.1.3 on page 82)

All paths are relative to %HALCONEXAMPLES%.

12.1.1 C#

• c#\IACallback (Visual Studio 2013 or higher)

Image acquisition example to demonstrate how to use image acquisition callbacks.

• c#\DrawingObjects (Visual Studio 2013 or higher)

Use event-based interaction with drawing objects within a WinForms dialog.

• c#\DrawingObjectsWPF (Visual Studio 2013 or higher)

Use event-based interaction with drawing objects within a WPF application and integrate exported C# Code.

• c#\Matching (Visual Studio 2013 or higher, Mono)

Locate an IC on a board and measure pin distances using shape-based matching (HShapeModel) and 1D
measuring (HMeasure).

• c#\MatchingAvalonia (Visual Studio 2019 or higher, .NET Core)

Matching example to show how a HALCON window can be used as part of an Avalonia application.

• c#\MatchingWPF (Visual Studio 2013)

Matching example to demonstrate the use of HALCON in a WPF application using Visual Studio 2013 or
higher.

.N
E

T

82 Additional Information

• c#\MultiThreading (Visual Studio 2013 or higher, Mono)

Use HALCON/.NET with multiple threads for image acquisition, processing (2D data code reading,
HDataCode2D), and image display.

• c#\SerializedItem (Visual Studio 2013 or higher, Mono)

Use serialization of HALCON objects and tuples in the C# interface.

• hdevengine\c#\ExecProgram (Visual Studio 2013 or higher, Mono)

Execute an HDevelop program for fin detection using HDevEngine

• hdevengine\c#\ExecExtProc (Visual Studio 2013 or higher, Mono)

Execute an external HDevelop procedure for fin detection using HDevEngine

• hdevengine\c#\ExecProcedures (Visual Studio 2013 or higher, Mono)

Execute local and external HDevelop procedures for fin detection using HDevEngine

• hdevengine\c#\ErrorHandling (Visual Studio 2013 or higher, Mono)

Handle HDevEngine exceptions

• hdevengine\c#\MultiThreading (Visual Studio 2013 or higher, Mono)

Executing an HDevelop procedure in parallel by two threads using HDevEngine/.NET

• hdevengine\c#\MultiThreadingTwoWindows (Visual Studio 2013 or higher, Mono)

Executing different HDevelop procedures in parallel by two threads using HDevEngine/.NET

12.1.2 Visual Basic .NET

• vb.net\MatchingWPF (Visual Studio 2013 or higher)

Matching example to demonstrate the use of HALCON in a WPF application using Visual Studio 2013 or
higher.

• hdevengine\vb.net\ExecProgram (Visual Studio 2013 or higher)

Execute an HDevelop program for fin detection using HDevEngine

• hdevengine\vb.net\ExecExtProc (Visual Studio 2013 or higher)

Execute an external HDevelop procedure for fin detection using HDevEngine

• hdevengine\vb.net\ExecProcedures (Visual Studio 2013 or higher)

Execute local and external HDevelop procedures for fin detection using HDevEngine

• hdevengine\vb.net\ErrorHandling (Visual Studio 2013 or higher)

Handle HDevEngine exceptions

12.1.3 C++

• cpp.net\Matching (Visual Studio 2013 or higher)

Locate an IC on a board and measure pin distances using shape-based matching (HShapeModel) and 1D
measuring (HMeasure)

• cpp.net\Interoperate (Visual Studio 2013 or higher)

Demonstrate the use of a HALCON/C++ DLL from within a HALCON/.NET application using Visual Studio
2013 or higher.

12.2 HALCON/.NET Applications under Linux Using Mono 83

12.2 HALCON/.NET Applications under Linux Using Mono

Chapter 10 on page 61 describes in detail how to develop HALCON/.NET applications in general. If you want to
create applications under Linux using Mono, see the following sections for additional information:

• restrictions (section 12.2.1 on page 83)

• how to deploy applications created under Windows (section 12.2.2 on page 83)

• how to compile an application with Mono (section 12.2.3 on page 83)

• other GUI libraries (section 12.2.4 on page 84)

If you want to target Linux and do not need Windows Forms, consider using .NET Core.

12.2.1 Restrictions

Please note the following restrictions when developing or using HALCON/.NET applications via Mono:

• Mono only supports Windows Forms 2.0.

• HWindowControl is not yet initialized in the event Load of a form, due to a different initializa-
tion order of X Window widgets. Please place initialization and similar code in the event handler of
HSmartWindowControl’s (or HWindowControl’s) event HInitWindow.

private void hWindowControl1_HInitWindow(object sender, System.EventArgs e)

{

window = hWindowControl1.HalconWindow;

window.SetDraw("margin");

window.SetColor("cyan");

}

12.2.2 Deploying HALCON/.NET Applications Created under Windows

Because of HALCON/.NET’s platform independence, you can copy an application created under Windows to a
Linux computer and simply start it there – provided that Mono and HALCON are installed on the destination
computer (see section 10.4 on page 64 for more information).

12.2.3 Compiling HALCON/.NET Applications with Mono

Most of the HALCON/.NET examples provide a set of makefiles in the subdirectory makefiles to let you com-
pile them under Linux (see section 12.1 on page 81 for a list of the examples that support Linux). To start the
compilation, simply type

gmake

The executable is placed in the subdirectory makefiles/bin.

HALCON XL applications:
Please note that you should use HALCON XL only when you need its features.

!To create a HALCON/.NET XL application, type

gmake XL=1

In some cases, Mono may not find the native HALCON library libhalcon.so, which should be resolved via the
environment variable LD_LIBRARY_PATH and issue a corresponding error. You can create configuration files for
the HALCON/.NET (and HDevEngine/.NET) assembly that explicitly specify the path to the HALCON library
(see figure 12.1 on page 84 for an example) by calling

.N
E

T

84 Additional Information

<configuration>

<dllmap dll="halcon"

target="/opt/halcon/lib/x64-linux/libhalcon.so"/>

</configuration>

Figure 12.1: Example for a configuration file with HALCON being installed in the directory /opt/halcon.

gmake config

If you want to create a configuration file for only one of the assemblies, use the make commands config_halcon
and config_engine.

Note that you can also use xbuild (Mono’s implementation of msbuild) with the project files.

12.2.4 Using Other GUI Libraries

In principle, you can also use other GUI libraries instead of Windows Forms or WPF, e.g., Gtk#. However,
HSmartWindowControl or HSmartWindowControlWPF are Windows Forms or WPF elements, respectively,
and thus can no longer be used. Instead, you can open HALCON graphics windows directly with the operator
OpenWindow. If you want to place a graphics window inside another element, pass the element’s native window
handle in the parameter fatherWindow.

Note that HALCON/.NET has not been tested with other GUI libraries.

12.3 Using HDevelop Programs

You can use HDevelop programs or procedures in two ways in your .NET application:

• Execute them directly via HDevEngine (see part VI on page 133 for detailed information).

• Export them into C# or Visual Basic .NET code via the menu item File . Export (see the HDevelop User’s
Guide, section 6.6 on page 69) and integrate the code in your application.

The latter method is described in this section.

12.3.1 Using the Template Application

In most cases, you will manually integrate the exported code into your application. To quickly test the exported
code, you can integrate it into the so-called template project (available for C# and Visual Basic .NET) in the
subdirectory HDevelopTemplate (or HDevelopTemplateWPF, depending on your preferred GUI platform) as
follows:

1. Move or copy the exported source code file into subdirectory source of the template application.

2. Open the solution file, right-click the current project in the Solution Explorer, and select the menu item
Add Existing Item. Navigate to the source code file and select Add As Link, which is accessed via
the arrow on the right side of the Add button (see figure 12.2 on page 84).

Figure 12.2: Linking existing items to an application.

3. When you run the application, the form depicted in figure 12.3 on page 85 appears. Click Run to start the
exported HDevelop program.

4. If you did not add the exported code correctly, the error message depicted in figure 12.4 on page 85 appears.
In Visual Basic .NET, different error messages appear.

12.4 HALCON/.NET and Remote Access 85

Figure 12.3: The template form for exported code.

Figure 12.4: Error message upon running a template without exported code.

12.3.2 Combining the Exported Code with the HALCON/.NET Classes

The exported code does not use the classes like HImage described in the previous chapter. Instead, all operators
are called via the special class HOperatorSet. Iconic parameters are passed via the class HObject (which is the
base class of HImage, HRegion, and HXLD), control parameters via the class HTuple.

You can combine the exported code easily with “normal” HALCON/.NET code because iconic classes provide
constructors that initialize them with instances of HObject. Furthermore, iconic classes can be passed to methods
that expect an HObject.

12.4 HALCON/.NET and Remote Access

For performance reasons, HALCON/.NET suppresses unmanaged code security when making calls into the native
HALCON library. Should your machine vision application run in an environment that allows remote access, you
might wish to explicitly check permissions for code calling within your application or library.

.N
E

T

86 Additional Information

Part IV

Programming With HALCON/Python

Introducing HALCON/Python 89

Chapter 13

Introducing HALCON/Python

This chapter introduces you to HALCON/Python. Chapter 14 on page 91 shows how to use it to create Python
applications, chapter 15 on page 93 contains detailed information.

What is HALCON/Python?

HALCON/Python is a set of native Python language bindings for HALCON. This includes interfaces for operators,
HDevEngine and interoperability for third-party libraries like NumPy.

The major design goals for HALCON/Python are simplicity and rapid prototyping.

Platform Independence

HALCON/Python is officially supported for CPython, the reference implementation of the Python programming
language. We test the interface on x64-win64and x64-linux. In addition, successful experiments were performed
on ARM with CPython.

Other Python implementations should work as long as they are appropriate implementations of the Python standard.

What’s more, not only can you use it on all these platforms, but you can run an application created on one of
them on the other ones without having to recompile it. This is possible because applications written in Python are
interpreted at runtime, instead of being compiled ahead of time.

HDevEngine/Python

By using the HDevEngine/Python language bindings, you can execute HDevelop programs and procedures from a
Python application. For more information, please refer to part VI on page 133.

13.1 A First Example

This section demonstrates how to create a simple HALCON application with Python. For a more comprehensive
description, see chapter 14 on page 91.

The task is to read an image and compute the number of connected regions in it, as illustrated in figure 13.1 on
page 90

1. Install HALCON 23.05

2. Install Python 3.8 or newer on your system.

3. Setup your Python environment of choice, e.g., using python -m venv

path_to_new_virtual_environment

4. Run the following commands in a shell:

mkdir region_example

cd region_example

pip install mvtec-halcon==23050

P
yt

ho
n

90 Introducing HALCON/Python

Figure 13.1: Left: Input image of a printed circuit board. Middle: Regions found by threshold, colored red. Right:
Connected regions, a result of connection.

5. Create a file named program.py and change the content to:

import halcon as ha

if __name__ == '__main__':
img = ha.read_image('pcb')

region = ha.threshold(img, 0, 122)

num_regions = ha.count_obj(ha.connection(region))

print(f'Number of Regions: {num_regions}')

6. To run the application, type the following command in the same shell:

python program.py

As a result, you should see the following output ’Number of Regions: 43’.

Creating Applications With HALCON/Python 91

Chapter 14

Creating Applications With
HALCON/Python

14.1 Python Development Environments

The examples are written in Python 3.8. They work at least on the following platforms when using CPython as
interpreter and runtime:

1. x64-win64

2. x64-linux

Newer Python versions should work without problems. It is possible that other platforms and alternative Python
implementations are functional, of course native HALCON binaries also need to be available on that platform.

14.2 Adding HALCON/Python to an Application

HALCON/Python packages are pip compatible.

Use the following command to add HALCON/Python to your project:

pip install mvtec-halcon==23050

While PEP 440 and by extension PyPI does not require SemVer, HALCON/Python and other language interface
packages follow a SemVer approach to avoid unnecessary conflicts and tooling issues. However, HALCON ver-
sions are not SemVer compatible, so Python packages receive a SemVer-compatible version by combining the
major, minor, and revision into a new version, e.g.:

• 22.11.1→ 22111.0.0

• 22.11.0→ 22110.0.0

• 23.05.0→ 23050.0.0

HALCON/Python is not a self-contained package but an interface to the native HALCON library. Therefore, the
package version used by your project has to match the installed HALCON version exactly.

Even for maintenance releases, which are backwards compatible at application level, mixing of binaries from dif-
ferent releases is not recommended because the internal communication between HALCON/Python and the native
HALCON library is not guaranteed to be always compatible. Therefore, the revision of the HALCON release is
also part of the SemVer major version. The SemVer minor and patch version are reserved for fully backwards-
compatible intermediate releases of the package itself. See section 14.4 on page 92 for updating dependencies.

To use the packages offline, download them from the PyPI website.

P
yt

ho
n

92 Creating Applications With HALCON/Python

14.3 Deploying an Application

There is no standard way for assembling Python applications into ready-to-use applications. Approaches range
from just copying files to embedding the source code, interpreter and runtime via tools like cx_Freeze.

Note that native DLLs are resolved at runtime from the system environment. Therefore, a matching HALCON
version and license must be installed on the destination computer, and the environment variables set correctly (see
the Installation Guide,section A.4 on page 39).

14.4 Using a Newer HALCON/Python Release

You can check which HALCON/Python version is installed in your Python environment by running pip freeze.
If you want to update to a newer HALCON version you must install the new version in your Python environment.

For example, to update to 23.05.0, run this command in a shell inside your project directory:

pip install -Iv mvtec-halcon==23050

HALCON/Python Interface 93

Chapter 15

HALCON/Python Interface

15.1 Module Import

To strike a good balance between ease of use, readability, and traceability we recommend importing the HAL-
CON/Python module like this:

import halcon as ha

15.2 Using HALCON Operators From HALCON/Python

In HALCON/Python, you call HALCON operators directly as non-member functions, exposed directly through
the top level halcon module.

The following code grabs the first image of an image sequence using a framegrabber and displays the image in a
window:

P
yt

ho
n

94 HALCON/Python Interface

framegrabber = ha.open_framegrabber(

name='File',
horizontal_resolution=1,

vertical_resolution=1,

image_width=0,

image_height=0,

start_row=0,

start_column=0,

field='default',
bits_per_channel=-1,

color_space='default',
generic=-1,

external_trigger='default',
camera_type='board/board.seq',
device='default',
port=1,

line_in=-1

)

img = ha.grab_image(framegrabber)

width, height = ha.get_image_size_s(img)

window = ha.open_window(

row=0,

column=0,

width=width,

height=height,

father_window=0,

mode='visible',
machine=''

)

ha.disp_obj(img, window)

See the subsequent sections for a breakdown of the example.

15.3 Operators Are Standalone Functions

Notice how all operator calls are standalone functions.

ha.open_framegrabber(...)

ha.grab_image(...)

ha.get_image_size_s(...)

ha.open_window(...)

ha.disp_obj(...)

15.4 Inputs Are Parameters, Outputs Are Return Values

Another important aspect of HALCON/Python is the split of inputs and outputs. Inputs are function parameters,
and outputs are return values.

img = ha.grab_image(framegrabber)

width, height = ha.get_image_size_s(img)

Single outputs are returned directly, and multiple outputs are returned as Python tuple. This allows clearer rea-
soning about data transformations, aided by ergonomic features such as destructuring. This can be seen with
get_image_size_s, which returns two values, both of which can be given names directly.

15.5 HALCON Tuples Are Represented With Native Python Types 95

15.5 HALCON Tuples Are Represented With Native Python Types

Both when passing values into operators as input parameters, and when receiving values as return values from
operators, what is represented with HALCON Tuples in HDevelop is a native Python value in HALCON/Python.

Don’t confuse HALCON Tuples with Python tuples, they are unconnected concepts.

For example, the return value for get_image_size_s is truly of type int and not something that represents the
HALCON version of integers.

img = ha.read_image('pcb')
width, height = ha.get_image_size_s(img)

assert width == 1109

assert type(width) == int

assert height == 871

assert type(height) == int

In HALCON/Python, HTuple maps to either one of the following types or to a possibly mixed list of them:

• int

• float

• str

• The class HHandle

Python’s float maps to HALCON’s real type. While Python’s int is of arbitrary precision, calling operators with
int values outside what a signed integer of platform size can represent, e.g.: ptrdiff_t in C, will result in an
exception.

15.6 HHandle

HHandle is a class that represents control handle values.

camera_model = ha.create_camera_setup_model(num_cameras=4)

assert isinstance(camera_model, ha.HHandle)

Here, create_camera_setup_model returns a HHandle that represents a camera model. This HHandle can later
be passed to other operators that work with camera models. Other than equality comparison, HHandle does not
implement any further functionality by itself.

15.7 HObject

HObject is a class that represents iconic objects.

In HALCON, iconic objects model a hierarchy:

image region xld

object

xld_cont xld_poly xld_para xld_mod_para xld_ext_para

P
yt

ho
n

96 HALCON/Python Interface

HALCON/Python does not model this object hierarchy with a class hierarchy, rather it only provides a single class
HObject.

Iconic objects in HALCON can represent collections of objects, such as a sequence of images, or multiple regions
etc. HALCON/Python mirrors this behavior:

img = ha.read_image('pcb')
img_seq = ha.concat_obj(img, ha.read_image('fuse'))

width, height = ha.get_image_size(img_seq)

assert width == [1109, 768]

assert height == [871, 576]

Here, img_seq represents two images, and follow-up operators like get_image_size work in a batch fashion
accordingly.

HObject behaves similarly to lists in Python:

assert len(img_seq) == 2

for single_img in img_seq:

assert ha.get_image_size_s(single_img) > (600, 400)

assert ha.get_image_size_s(img_seq[1]) == (768, 576)

assert ha.get_image_size_s(img_seq[-2]) == (1109, 871)

assert ha.get_image_size(img_seq[:4]) == ([1109, 768], [871, 576])

assert ha.get_image_size(img_seq[1:4]) == ([768], [576])

This includes support for len, iteration, positive and negative indexing, and efficient slicing.

15.8 Output Values

Outputs come in three variants:

• Always as single value, e.g.: read_image
In this case, the Python version of the operator will return a single value of the list’s element type.

• Always as list, e.g.: quat_normalize
In this case, the Python version of the operator will always return a list.

• Maybe as single value or maybe as list, e.g.: get_image_size
In this case, the Python version of the operator will also return a list. However, in many cases it will be known
in advance, e.g.: from the number of input parameters, that only a single value is expected. For convenience,
a second variant of the operator with suffix _s is provided. This will always return a single value, or raise an
exception when the operator does not return a single value.

The difference between operators that always return a list and those that sometimes return a list is rather just
conceptual. The advantage lies mainly in the convenience of access for the common case of working with single
values.

img = ha.read_image('pcb')

width, height = ha.get_image_size_s(img)

assert width == 1109

assert height == 871

width, height = ha.get_image_size(img)

assert width == [1109]

assert height == [871]

img_seq = ha.concat_obj(img, ha.read_image('fuse'))
width, height = ha.get_image_size(img_seq)

assert width == [1109, 768]

assert height == [871, 576]

15.9 Error Handling 97

Asking for the size of a single image, and getting a list with a single element is not particularly useful. _s versions
express the expectation that there should always be exactly one answer, neither zero nor many, explicitly and
conveniently.

For information about which operators have such versions, see the HALCON operator reference.

15.9 Error Handling

Just like Python, HALCON/Python handles errors via exceptions. As shown in the example below, HALCON
error constants are defined at the module level.

def load_custom_pcb_img_or_fallback(custom_pcb_filename):

try:

return ha.read_image(custom_pcb_filename)

except ha.HOperatorError as err:

if err.error_code != ha.errors.H_ERR_FNF: # HALCON error code File not found.

raise err

return ha.read_image('pcb')

img = load_custom_pcb_img_or_fallback('does-not-exist')

In this example, we want to either load a custom PCB image or fallback to the default PCB image if the image
cannot be found. If another error occurs, we want to propagate the original error further up the call stack.

The custom exceptions used by HALCON/Python form an inheritance hierarchy:

HError

Exceptions

HOperatorError HTupleConversionError HDevEngineError HInteropError

It starts with the standard Python Exception, from which HError inherits, followed by four more specific excep-
tions that inherit from HError. They occur in different situations. Operators and other functions may raise more
than one type of exception.

class CustomClass(object):

pass

img = ha.read_image(CustomClass())

HALCON/Python does not know how to pass the custom user defined class to the HALCON operator
read_image. For any instance where a conversion to or from a native HALCON tuple fails, an instance of
HTupleConversionError is raised.

• HError is the base exception all other exceptions inherit from.

• HTupleConversionError is for errors that occur during conversion to or from a native HALCON tuple.

• HDevEngineError is for errors that occur while using the HDevEngine.

• HInteropError is for errors that are conceptually related to functionality while interfacing with third-party
libraries, such as NumPy.

All custom HALCON/Python exceptions implement __str__.

P
yt

ho
n

98 HALCON/Python Interface

15.10 Garbage Collection

HALCON/Python objects that have some natively backed resources implement cleanup via finalizers, implement-
ing __del__.

This means no additional care needs to be taken to ensure that native resources such as memory are freed after a
variable is no longer reachable.

For example, CPython uses ref counting to implement garbage collection, which results in moderately deterministic
behavior.

15.11 Named Parameters

Python offers users the choice to specify the name of function parameters on the call site. As seen with the call to
open_framegrabber, this can help improve readability of code.

framegrabber = ha.open_framegrabber(

name='File',
horizontal_resolution=1,

vertical_resolution=1,

image_width=0,

image_height=0,

start_row=0,

start_column=0,

field='default',
bits_per_channel=-1,

color_space='default',
generic=-1,

external_trigger='default',
camera_type='board/board.seq',
device='default',
port=1,

line_in=-1

)

Compare this to a version without named parameters:

framegrabber = ha.open_framegrabber('File', 1, 1, 0, 0, 0, 0, 'default', -1,

'default', -1, 'default', 'board/board.seq', 'default', 1, -1

)

For example, what does the 0 at position 7 mean?

We suggest using named parameters where it makes it easier for readers to understand what is going on.

Note that HALCON does not offer 100% backwards compatibility for operator parameter names. Should a pa-
rameter change, this will be noted in the compatibility notes, and can be quickly addressed with some string
replacements.

15.12 Operator and Parameter Capitalization

Following Python’s PEP8 standard for code style, functions and parameter in HALCON/Python are snake case.

15.13 UTF-8 in HALCON/Python

By default, all strings passed to HALCON from Python are encoded as UTF-8 bytes, and all string bytes passed
from HALCON to HALCON/Python are decoded as UTF-8 strings. This is the only supported encoding.

15.14 HALCON/Python with HALCON XL 99

Configuring HALCON via set_system(’filename_encoding’, ’locale’) to use a local encoding is not
supported.

When used in a legacy mode, some operators may return strings that are invalid UTF-8, even when ’file-
name_encoding’ is set to ’utf8’. A workaround for such situations exists in the form of:

try:

Replace invalid UTF-8 when encoding HALCON strings for use in Python.

ha.ffi.enable_utf8_error_replace()

Call problematic operator ...

finally:

Restore default behavior of raising a UnicodeError.

ha.ffi.disable_utf8_error_replace()

Disabling the safe default mode is only recommended as a workaround and should only be done where needed, for
as long as needed.

15.14 HALCON/Python with HALCON XL

It’s possible to use HALCON/Python with HALCON XL. To do so, set the environment variable HAL-
CON_PYTHON_XL to the string true before the halcon module is imported. This can be done directly in Python:

import os

os.environ['HALCON_PYTHON_XL'] = 'true'

import halcon as ha

Alternatively, it’s possible to set the environment variable through the usual system specific settings. If possible
we recommend using the suggested method, to minimize external dependencies.

P
yt

ho
n

100 HALCON/Python Interface

Part V

Programming With HALCON/C

Introducing HALCON/C 103

Chapter 16

Introducing HALCON/C

HALCON/C is the interface of the image analysis system HALCON to the programming language C. Together
with the HALCON library, it allows to use the image processing power of HALCON inside C programs.

This part is organized as follows: We start with a first example program to show you how programming with
HALCON/C looks like. Chapter 17 on page 105 introduces the different parameter classes of HALCON operators.
We will explain the use of HALCON tuples (section 17.2.4 on page 108) for supplying operators with tuples of
control parameters in great detail: Using tuples, the two calls to select_shape in our example program could be
combined into only one call. We will further explain the use of HALCON vectors in section 17.3 on page 111.
Chapter 18 on page 119 is dedicated to the return values of HALCON operators. Chapter 19 on page 121 gives an
overview over all the include files and C libraries necessary for compiling C programs and shows how to create a
stand-alone application. Finally, chapter 20 on page 127 contains example solutions for some common problems
in image processing (like edge detection).

16.1 A First Example

This section demonstrates how to create a simple HALCON application with C. For a more comprehensive de-
scription, see chapter 19 on page 121.

The task is to read an image and compute the number of connected regions in it, as illustrated in figure 16.1 on
page 103

Figure 16.1: Left: Input image of a printed circuit board. Middle: Regions found by threshold, colored red. Right:
Connected regions, a result of connection.

1. Install HALCON 23.05

2. Install a C99 or newer toolchain on your system.

3. Setup your C environment of choice.

4. Run the following commands in a shell:

mkdir region_example

cd region_example

C

104 Introducing HALCON/C

5. Create a file named main.c and change the content to:

#include <stdio.h>

#include <inttypes.h>

#include <HalconC.h>

int main()

{

Hobject img;

read_image(&img, "pcb");

Hobject region;

threshold(img, ®ion, 0, 122);

Hobject connected_regions;

connection(region, &connected_regions);

Hlong num_regions = 0;

count_obj(connected_regions, &num_regions);

printf("Number of Regions: \%" PRIdPTR "\n", num_regions);

}

6. Compile the program.

For details see section 19.4 on page 123 for Windows and section 19.5 on page 124 for Linux.

7. To run the application, type the following command in the same shell:

./region_example

As a result, you should see the following output ’Number of Regions: 43’.

The HALCON Parameter Classes 105

Chapter 17

The HALCON Parameter Classes

HALCON distinguishes four different classes of operator parameters:

• Input image objects

• Output image objects

• Input control parameters

• Output control parameters

Input parameters are passed by value, output parameters are passed by reference (using the &-operator). An
exception to this rule are output control parameters of type char*. Here, the caller has to provide the memory and
only a pointer to that memory is passed to the operator.

Most HALCON operators can also be called using tuples of parameters instead of single values (so-called tuple
mode). Take the operator threshold from our example program in the previous chapter, which segments an image
and returns the segmented region: If you pass a tuple of images, it will return a tuple of regions, one for each input
image. However, in contrast to HDevelop and other programming interfaces, in HALCON/C the tuple mode must
be selected explicitly by prefixing the operator with T_ and by using tuples for all control values (see section 17.2
on page 106 for more details). Whether an operator can be called in tuple mode can be seen in the HALCON
reference manual.

HALCON/C provides the data structure Htuple for tuples of control parameters (see section 17.2.4 on page 108 for
details) and the data structure Hobject for image objects (single objects as well as object tuples; see section 17.1).

17.1 Image Objects

By using image objects, HALCON provides an abstract data model that covers a lot more than simple image arrays.

Basically, there are two different types of image objects:

• Images

• Regions

A region consists of a set of coordinate values in the image plane. Regions do not need to be connected and may
include “holes.” They may even be larger than the image format. Internally, regions are stored in the so-called
runlength encoding.

Images consist of at least one image array and a region, the so-called domain. The domain denotes the pixels
that are “defined” (i.e., HALCON operators working on gray values will only access pixels in this region). But
HALCON supports multi-channel images, too: Images may consist of an (almost) arbitrary number of channels.
An image coordinate therefore isn’t necessarily represented by a single gray value, but by a vector of up to n gray
values (if the coordinate lies within the image region). This may be visualized as a “stack” of image arrays instead
of a single array. RGB- or voxel-images may be represented this way.

HALCON provides operators for region transformations (among them a large number of morphological operators)
as well as operators for gray value transformations. Segmentation operators are the transition from images (gray
values) to regions.

C

106 The HALCON Parameter Classes

HALCON/C provides the data type Hobject for image objects (both images and regions). In fact, Hobject is a
surrogate of the HALCON database containing all image objects. Input image objects are passed to the HALCON
operators by value as usual, output image objects are passed by reference, using the &-operator. Variables of type
Hobject may be a single image object as well as tuples of image objects. Single objects are treated as tuples with
length one.

Of course, users can access specific objects in an object tuple, too. To do so, it is necessary to extract the specific
object key (converted to integer) first, using the operators obj_to_integer or copy_obj. The number of objects
in a tuple can be queried with count_obj. To convert the keys (returned from obj_to_integer) back to image
objects again, the operator integer_to_obj has to be used. Note that integer_to_obj duplicates the image
objects. (This does not necessarily mean that the corresponding gray value arrays are also duplicated. As long
as there is only read-access, a duplication of the references is sufficient). Therefore, all extracted objects have to
be deleted explicitly from the HALCON database, using clear_obj. Figure 17.1 contains an excerpt from a C
program to clarify that approach.

...

Hobject objects; /* tuple of image objects */

Hobject obj; /* single image object */

Hlong surrogate; /* object key, converted to integer */

Htuple Tsurrogates; /* tuple of object keys */

Htuple Index,Num; /* temporary tuple for parameter passing */

Hlong i; /* loop variable */

Hlong num; /* number of objects */

...

count_obj(objects, &num);

/* variant 1: object key -> control parameter */

create_tuple_i(&Index,1);

create_tuple_i(&Num,num);

T_obj_to_integer(objects,Index,Num,&Tsurrogates);

for (i=0; i<num; i++)

{

surrogate = get_i(Tsurrogates,i);

/* process single object */

}

/* variant 2: copying objects individually */

for (i=1; i<=num; i++)

{

copy_obj(objects,&obj,i,1);

/* process single object */

}

...

Figure 17.1: Accessing the i-th image object in a tuple of image objects.

Some HALCON operators like difference allow the use of the following specific image objects as input param-
eters:

NO_OBJECTS: An empty tuple of image objects.

EMPTY_REGION: An image object with empty region (area = 0).

FULL_REGION: An image object with maximal region.

These objects may be returned by HALCON operators, too.

17.2 Control Parameters

HALCON/C supports the following data types as types for control parameters of HALCON operators:

• integers,

17.2 Control Parameters 107

• floating point numbers,

• character arrays (strings),

• handles

17.2.1 String Encoding

Regardless of the encoding of the HALCON library (set_system(’filename_encoding’, ...)) the HAL-
CON/C interface expects raw char pointer strings that are passed to HALCON operators and to Htuple in-
stances to be UTF-8 encoded. The encoding of the HALCON/C interface (interface encoding) can be changed
to local-8-bit encoding via a call of SetHcInterfaceStringEncodingIsUtf8(false). Note that the en-

!coding must not be changed when using HDevEngine. The current interface encoding can be requested via
IsHcInterfaceStringEncodingUtf8(). It is not recommended to switch the interface encoding back and
forth. The setting should be adjusted only once at the very beginning of the program (before the first HALCON
operator or assignment), because the Htuple structure can not store in which encoding the contained strings are
present, i.e, for all write and read accesses, the same encoding must be set. Furthermore, the interface encoding
is set globally and is therefore not suitable for multithreading programs: Changing the setting in one thread has
an effect on other threads. Note also, that UTF-8 encoded strings may take more memory space than strings in
local-8-bit-encoding. This must be considered when providing the buffer for strings returned by HALCON oper-
ators. As long as the maximum length of the strings returned is not known for sure, it is recommended preferring
operator calls in tuple mode over simple mode.

If the string encoding needs to be converted without changing the interface encoding, the following functions for
converting wchar_t* strings and char* strings to or from tuples are provided:

UTF-8 version local 8-bit version wchar_t* version (Windows only)
create_tuple_s_from_utf8 create_tuple_s_from_local8bit create_tuple_s_from_wcs

reuse_tuple_s_from_utf8 reuse_tuple_s_from_local8bit reuse_tuple_s_from_wcs

init_s_from_utf8 init_s_from_local8bit init_s_from_wcs

set_s_from_utf8 set_s_from_local8bit set_s_from_wcs

get_s_to_utf8 get_s_to_local8bit get_s_to_wcs

Table 17.1: Encoding helper functions.

When converted to a different encoding, a string may need a buffer of bigger size. To check on whether you have
to allocate more memory for your string you can use the get_s_to_*-functions mentioned in the table above (see
also figure 17.7). The functions transcode a string to the respective encoding and write it into the buffer provided
by the user. If the returned size of the string is greater or equal to the provided buffer, the passed buffer size was
too small.

17.2.2 Control Parameter Tuples

Using control parameter tuples in C is not as elegant as using image object tuples. To circumvent the missing
generic lists in C, it was necessary to introduce two different working modes into HALCON/C: The simple mode
and the tuple mode. If a tuple is necessary for at least one control parameter, the tuple mode has to be used for
operator calls. In tuple mode, all control parameters of an operator must be passed as type Htuple. Mixing of
the two modes is not possible. The tuple mode also has to be used if the number or type of values that a operator
calculates is unknown beforehand.

Basically, there are three ways to determine the default type of control parameters for a given operator:

• Operator description in the HALCON reference manual

• HALCON system operator get_param_info

• Description of the HALCON interface in the file HProto.h

C

108 The HALCON Parameter Classes

Sometimes the manuals mention more than one possible type. If only integers and floating point numbers are
allowed for a parameter, values have to be passed as parameters of type double. For all other combinations of
types, the tuple mode has to be used.

HALCON operators, that are called in tuple mode are distinguished from simple mode calls by a preceding T_.
This means that the following is a call of the HALCON operator select_shape (as described in the HALCON
reference manual) in simple mode

select_shape

whereas

T_select_shape

is a call of the same operator in tuple mode.

17.2.3 Simple Mode

In the so-called simple mode, all control parameters of operator calls are variables (or constants) of the data types

• Hlong for integers (HALCON type LONG_PAR),

• double for floating point numbers (DOUBLE_PAR), or

• char* for character arrays (strings, STRING_PAR).

Hlong and double input control parameters are passed by value as usual, the corresponding output control param-
eters are passed by reference, using the &-operator. String parameters are pointers to char in both cases. Note that
the memory for output control parameters (in particular strings) has to be provided by the caller! We recommend
allocating memory for at least 1024 characters for string parameters of unknown length. Output parameter values
that are of no further interest can be set to NULL.

Examples for HALCON operator calls in simple mode can be found in the C programs in figure 17.1 and figure 16.1
on page 103.

Operators with parameters resembling handles must always be called in the tuple mode as described in the follow-
ing section. The simple mode for these operators is only available in legacy handle mode (see set_system).

17.2.4 Tuple Mode

We mentioned already that control parameter tuples for HALCON operators need special treatment. In this chapter
we will give the details on how to construct and use those tuples. The HALCON reference manual describes a large
number of operators that don’t operate on single control values but on tuples of values. Using those operators, it is
easy to write very compact and efficient programs, because often it is possible to combine multiple similar operator
calls into a single call.

Unfortunately, C provides no generic tuple or list constructor. In contrast, HALCON allows tuples with mixed
types as control parameter values (e.g., integers mixed with floating point numbers).

Therefore, in addition to the very intuitive simple mode there is another mode in HALCON/C: the tuple mode.
Using this mode is a little more elaborate. If at least one of the control parameters of a HALCON operator is
passed as a tuple, the tuple mode has to be used for all control parameters (Mixing of both modes isn’t possible).
Furthermore, the tuple mode also has to be used if the number or type of the calculated values are unknown
beforehand.

Syntactically, tuple mode is distinguished from simple mode by a T_ preceding the operator name. For example,
calling disp_circle in tuple mode is done by

T_disp_circle(...)

To ease the usage of the tuple mode, HALCON/C provides the abstract data type Htuple for control parameter
tuples. Objects of type Htuple may be constructed using arrays of the types

17.2 Control Parameters 109

• Hlong* for integer arrays (HALCON type LONG_PAR),

• double* for floating point arrays (DOUBLE_PAR),

• char** for string arrays (strings, STRING_PAR) or

• Hphandle* for handle arrays (HANDLE_PAR)

Additionally, a MIXED_PAR array type is supported that can hold an array with any of the three native value types
in arbitrary combination. The usage of these four array types is transparent.

Control parameter tuples must be created, deleted, and manipulated using the appropriate HALCON/C procedures
only (overview in figures 17.2, 17.3, 17.4 and 17.5).

The rules for parameter passing are valid in tuple mode, too: Input control parameters (type Htuple) are passed by
value as usual, output control parameters are passed by reference, using the “&” operator. For output parameters
that are of no further interest you can pass NULL.

The following sections describe the five most important steps when calling a HALCON operator in tuple mode:

• allocate memory (section 17.2.4.1 on page 109)

• construct input parameters (section 17.2.4.2 on page 109)

• call operator (section 17.2.4.3 on page 109)

• process output parameters (section 17.2.4.4 on page 109)

• free memory (section 17.2.4.5 on page 110)

Section 17.2.4.6 on page 110 contains an example.

Finally, section 17.2.4.7 on page 110 describes a generic calling mechanism that can be used in interpreters or
graphical user interfaces.

17.2.4.1 Allocate Memory

First, memory must be allocated for all tuples of input control parameters, using create_tuple or
create_tuple_type, respectively (see figures 17.2). Memory for output control parameter tuples is allocated
by HALCON/C (a call of create_tuple isn’t necessary). With create_tuple_i etc. you can create a tuple of
length 1 and set its value in a single step (see figures 17.3). With reuse_tuple_i etc. you can reuse an existing
tuple, i.e., destroy and reallocate it and set a single value (see figures 17.4).

17.2.4.2 Create Input Parameters

You set tuple elements using the appropriate procedures set_*. set_s, which insert a string into a tuple, allocates
the needed memory by itself, and then copies the string (see figure 17.5).

17.2.4.3 Call Operator

Then, the HALCON operator is actually called. The operator name is (as already explained) preceded by a T_ to
denote tuple mode.

17.2.4.4 Process Output Parameters

Further processing of the output parameter tuples takes place, using the procedures length_tuple, get_type
(see figure 17.2) and get_* (see figure 17.6 and figure 17.7). When processing strings (using get_s), please note
that the allocated memory is freed automatically upon deleting the tuple with destroy_tuple. If the string has
to be processed even after the deletion of the tuple, the whole string must be copied first. Also note that output
handles might be freed when deleting the last tuple. If a handle should be used further, it should be kept in a tuple.

C

110 The HALCON Parameter Classes

void create_tuple(tuple,length) or macro CT(tuple,length)

Htuple *tuple;

Hlong length;

/* creates a MIXED_PAR tuple that can hold 'length' entries h */

void create_tuple_type(tuple,length,type)

Htuple *tuple;

Hlong length;

Hlong type;

/* creates a tuple of 'type' that can hold 'length' entries.

* 'type' can hold either LONG_PAR, DOUBLE_PAR, STRING_PAR,

* HANDLE_PAR, or MIXED_PAR. */

void destroy_tuple(tuple) or macro DT(tuple)

Htuple tuple;

/* deletes a tuple (if the tuple contains string entries, */

/* the memory allocated by the strings is freed, too) */

Hlong length_tuple(tuple) or macro LT(tuple)

Htuple tuple;

/* returns the length of a tuple (number of entries) */

void copy_tuple(input,output) or macro CPT(input,output)

Htuple input;

Htuple *output;

/* creates a tuple and copies the entries of the input tuple */

void resize_tuple(htuple,new_length) or macro RT(htuple,new_length)

Htuple *htuple;

Hlong new_length;

/* creates a tuple with the new size and copies the previous */

/* entries */

Figure 17.2: HALCON/C Htuple procedures (1/6).

17.2.4.5 Free Memory

Finally the memory allocated by all the tuples (input and output) has to be freed again. This is done with
destroy_tuple. If you still need the values of the tuple variables, remember to copy them first. Now, the
whole series can start again – using different or the same tuple variables.

17.2.4.6 Example for the Tuple Mode

An example for the tuple mode can be found in figure 17.8 or the file example3.c: The aim is to obtain information
about the current HALCON system state. The operator get_system(’?’,Values) (here in HDevelop syntax)
returns all system flags with their current values. Since in our case neither number nor type of the output parameters
is known beforehand, we have to use tuple mode for the actual operator call in HALCON/C. The rest of the program
should be self explanatory.

17.2.4.7 Generic Calling Mechanism

There is also an alternative generic calling mechanism for HALCON operators in tuple mode. This mechanism
is intended for the use in interpreters or graphical user interfaces:

T_call_halcon_by_id(id, ...)

calls the HALCON operator id in tuple mode, passing input parameters and getting the output parameters (see fig-
ure 17.9 on page 117 for the complete signature). The id of an operator can be requested with get_operator_id.

17.3 Vectors 111

void create_tuple_i(tuple,value)

Htuple *tuple;

Hlong val;

/* creates a tuple with specified integer value */

void create_tuple_d(tuple,value)

Htuple *tuple;

double val;

/* creates a tuple with specified double value */

void create_tuple_h(tuple,value)

Htuple *tuple;

Hphandle val;

/* creates a tuple with specified handle value */

void create_tuple_s(tuple,value)

Htuple *tuple;

char *val;

/* creates a tuple with specified string value */

void create_tuple_s_from_local8bit(tuple,value)

Htuple *tuple;

char *val;

/* creates a tuple with specified string value converted */

/* from local-8-bit encoding */

void create_tuple_s_from_utf8(tuple,value)

Htuple *tuple;

char *val;

/* creates a tuple with specified string value converted */

/* from UTF-8 encoding */

void create_tuple_s_from_wcs(tuple,value)

Htuple *tuple;

wchar_t *val;

/* creates a tuple with specified string value converted */

/* from wide-character encoding */

Figure 17.3: HALCON/C Htuple procedures (2/6).

17.3 Vectors

HALCON/C provides the data structure Hvector for the use of the vector functionality of the HDevelop language.
A HALCON vector is a container that can hold an arbitrary number of elements of the identical data type (i.e.,
tuples, iconic objects, or vectors) and dimension. The type of a vector, i.e., its dimension and the type of its
elements is defined when initializing the vector instance and cannot be changed during its lifetime. A vector with
one dimension may be a vector of tuples or a vector of iconic objects. A two-dimensional vector may be a vector
of vectors of tuples or a vector of vectors of iconic objects, and so on.

Construction of Vectors

When creating such a vector in HALCON/C you have to differ between vectors of iconic objects and vectors of
tuples.

C

112 The HALCON Parameter Classes

void reuse_tuple_i(tuple,val)

Htuple *tuple;

Hlong val;

/* reuses a tuple with specified integer value */

void reuse_tuple_d(tuple,val)

Htuple *tuple;

double val;

/* reuses a tuple with specified double value */

void reuse_tuple_h(tuple,val)

Htuple *tuple;

Hphandle val;

/* reuses a tuple with specified handle value */

void reuse_tuple_s(tuple,val)

Htuple *tuple;

char *val;

/* reuses a tuple with specified string value */

void reuse_tuple_s_from_local8bit(tuple,val)

Htuple *tuple;

char *val;

/* reuses a tuple with specified string value converted */

/* from local-8-bit encoding */

void reuse_tuple_s_from_utf8(tuple,val)

Htuple *tuple;

char *val;

/* reuses a tuple with specified string value converted */

/* from UTF-8 encoding */

void reuse_tuple_s_from_wcs(tuple,val)

Htuple *tuple;

wchar_t *val;

/* reuses a tuple with specified string value converted */

/* from wide-character encoding */

Figure 17.4: HALCON/C Htuple procedures (3/6).

Hvector vectorObj, vectorTup;

// Create a one-dimensional vector of iconic objects

V_create_object_vector(1,&vectorObj);

// Create a one-dimensional vector of tuples

V_create_tuple_vector(1,&vectorTup);

These calls create empty vectors of one dimension, e.g., a vector of tuples. It is also possible to create multi-
dimensional vectors, i.e., a vector of vectors of tuples or a vector of vectors of iconic objects and so on, by
specifying the number of dimensions in the call.

V_create_object_vector(2,&vectorObjMulti);

Note that the vector type and its dimension cannot be changed after the creation of the vector.

Accessing and Setting Vector Elements

To access an element in a vector of tuples you may use V_get_vector_tuple. The following code line queries a
tuple contained in vectorTup at position index and returns a copy of the result as a HTuple in tuple.

17.3 Vectors 113

void set_i(tuple,val,index) or macro SI(tuple,val,index)

Htuple tuple;

Hlong val;

Hlong index;

/* inserts an integer with value 'val' into a tuple at */

/* position 'index' ('index' in [0,length_tuple(tuple) - 1]) */

void set_d(tuple,val,index) or macro SD(tuple,val,index)

Htuple tuple;

double val;

Hlong index;

/* inserts a double with value 'val' into a tuple at */

/* position 'index' ('index' in [0,length_tuple(tuple) - 1]) */

void set_h(tuple,val,index) or macro SH(tuple,val,index)

Htuple tuple;

Hphandle val;

Hlong index;

/* inserts a handle with value 'val' into a tuple at */

/* position 'index' ('index' in [0,length_tuple(tuple) - 1]) */

void set_s(tuple,val,index) or macro SS(tuple,val,index)

Htuple tuple;

char *val;

Hlong index;

/* inserts a copy of string 'val' into a tuple at position */

/* 'index' ('index' in [0,length_tuple(tuple) - 1]); */

/* memory necessary for the string is allocated by set_s */

void set_s_from_local8bit(tuple,val,index) or macro SS_LOC(tuple,val,index)

Htuple tuple;

char *val;

Hlong index;

/* inserts a copy of string 'val', converted from */

/* local-8-bit encoding, into a tuple at position 'index' */

/* ('index' in [0,length_tuple(tuple) - 1]). */

void set_s_from_utf8(tuple,val,index) or macro SS_U(tuple,val,index)

Htuple tuple;

char *val;

Hlong index;

/* inserts a copy of string 'val', converted from UTF-8 */

/* encoding, into a tuple at position 'index' ('index' in */

/* [0,length_tuple(tuple) - 1]). */

void set_s_from_wcs(tuple,val,index) or macro SS_W(tuple,val,index)

Htuple tuple;

wchar_t *val;

Hlong index;

/* inserts a copy of string 'val', converted from */

/* wide-character encoding, into a tuple at position */

/* 'index' ('index' in [0,length_tuple(tuple) - 1]). */

Figure 17.5: HALCON/C Htuple procedures (4/6).

V_get_vector_tuple(vectorTup,index,tuple);

For accessing elements in vectors of iconic objects V_get_vector_obj can be used instead.

V_get_vector_obj(image,vectorTup,index);

C

114 The HALCON Parameter Classes

int get_type(tuple,index) or macro GT(tuple,index)

Htuple tuple;

Hlong index;

/* returns type of value at position 'index' in the tuple. */

/* Possible values: LONG_PAR, DOUBLE_PAR or STRING_PAR */

Hlong get_i(tuple,index) or macro GI(tuple,index)

Htuple tuple;

Hlong index;

/* returns the integer at position 'index' in the tuple */

/* (a type error results in a run time error) */

double get_d(tuple,index) or macro GD(tuple,index)

Htuple tuple;

Hlong index;

/* returns the floating point number at position 'index' in */

/* the tuple. (a type error results in a run time error) */

Hphandle get_h(tuple,index) or macro GH(tuple,index)

Htuple tuple;

Hlong index;

/* returns the handle at position 'index' in the */

/* tuple. (a type error results in a run time error) */

char *get_s(tuple,index) or macro GS(tuple,index)

Htuple tuple;

Hlong index;

/* returns the pointer(!) to the string at position 'index' */

/* in the tuple. (a type error results in a run time error) */

/* Attention: indices must be in [0,length_tuple(tuple) - 1] */

Figure 17.6: HALCON/C Htuple procedures (5/6).

The element to be accessed is specified by its index in form of a tuple. It may either contain a single index of an
element in one-dimensional vectors or several indices of the corresponding subvector(s) and its subelement(s) in
multi-dimensional vectors.

You may also query a whole subvector of a multi-dimensional vector using V_get_vector_elem.

Before accessing the contents of a vector you may set some vector elements first. Again a distinction is made
between vectors of tuples, vectors of iconic objects, and multi-dimensional vectors. The following lines show how
to set vector elements of one-dimensional vectors.

// Set an element of a vector of iconic objects

V_set_vector_obj(image,vectorObj,index);

// Set an element of a vector of tuples

V_set_vector_tuple(vectorTup,index,tuple);

The element to be set is again addressed by the specified index, which is represented as a Htuple. Beside the
index, the vector itself and the respective Hobject or Htuple to be set (e.g., image or tuple) must be added to
the call.

For multi-dimensional vectors the specified index tuple must contain the indices of the subvector(s) and its subele-
ment. The following code lines show the whole process from creating a two-dimensional vector, the image to be
set, and the index tuple up to specifying the indices and finally setting the element of the vector.

17.3 Vectors 115

Hlong get_s_to_local8bit(buffer,size,tuple,index) or macro GS_LOC(tuple,index)

char* buffer;

Hlong size;

Htuple tuple;

Hlong index;

/* Copies the (local-8-bit encoded) string at position */

/* 'index' into 'buffer'. 'size' determines the size of the */

/* buffer. The return value determines the size of the */

/* string, that would be written. If the returned length of */

/* the string is greater or equal to the provided */

/* buffer, the buffer was too small. */

/* Attention: indices must be in [0,length_tuple(tuple) - 1] */

Hlong get_s_to_utf8(buffer,size,tuple,index) or macro GS_U(tuple,index)

char* buffer;

Hlong size;

Htuple tuple;

Hlong index;

/* Copies the (UTF-8) string at position */

/* 'index' into 'buffer'. 'size' determines the size of the */

/* buffer. The return value determines the size of the */

/* string, that would be written. If the returned length of */

/* the string is greater or equal to the provided */

/* buffer, the buffer was too small. */

/* Attention: indices must be in [0,length_tuple(tuple) - 1] */

Hlong *get_s_to_wcs(buffer,size,tuple,index) or macro GS_W(tuple,index)

wchar_t* buffer;

Hlong size;

Htuple tuple;

Hlong index;

/* Copies the (wide-character) string at position */

/* 'index' into 'buffer'. 'size' determines the size of the */

/* buffer. The return value determines the size of the */

/* string, that would be written. If the returned length of */

/* the string is greater or equal to the provided */

/* buffer, the buffer was too small. */

/* Attention: indices must be in [0,length_tuple(tuple) - 1] */

Figure 17.7: HALCON/C Htuple procedures (6/6).

// Initialize and set the image and indices

Hobject img;

Htuple indices;

Hvector vectorObjMulti;

V_create_object_vector(2,&vectorObjMulti);

read_image(&img,"Image");

set_i(indices,0,0);

set_i(indices,1,1);

// Set a subvector of a multi-dimensional vector

V_set_vector_obj(img,vectorObjMulti,indices);

It is also possible to set a subvector of multi-dimensional vectors using V_set_vector_elem.

Note that it is also possible to set non-existing vector elements. If necessary the vector is automatically enlarged
and initialized with empty elements.

C

116 The HALCON Parameter Classes

#include "HalconC.h"

main ()

{

Htuple In, SysFlags, Info;

Hlong i, num;

printf("System information:\n");

/* prepare query */

create_tuple(&In, 1);

/* "?" = list of all informations */

set_s(In, "?", 0);

T_get_system(In, &SysFlags);

destroy_tuple(In);

num = length_tuple(SysFlags);

for (i = 0; i < num; i++)

{

create_tuple(&In, 1);

set_s(In, get_s(SysFlags, i), 0);

printf("%s ", get_s(SysFlags, i));

T_get_system(In, &Info);

destroy_tuple(In);

if (length_tuple(Info) > 0)

{

switch (get_type(Info, 0))

{

case INT_PAR:

printf("(Hlong): %" LONG_FORMAT "d\n", get_i(Info, 0));

break;

case DOUBLE_PAR:

printf("(double): %f\n", get_d(Info, 0));

break;

case STRING_PAR:

printf("(string): %s\n", get_s(Info, 0));

break;

case HANDLE_PAR:

printf("(handle): %" LONG_FORMAT "d\n", (Hlong)get_h(Info, 0));

break;

}

}

else

{

printf("(--): no data\n");

}

destroy_tuple(Info);

}

}

Figure 17.8: Tuple mode example program: Printing the current HALCON system state.

Destruction of Vectors

If a Hvector is not needed for further processing its contents and allocated memory must be freed with
V_destroy_vector.

V_destroy_vector(vectorTup);

Additional Information

In addition to the previously mentioned basic information the data structure of Hvector provides some more func-
tionality, e.g., inserting or removing vector elements, or concatenation of vectors. Please refer to the corresponding

17.3 Vectors 117

/* generic HALCON operator call style:

* - the operator is called by an id that is returned by get_operator_id;

* attention: this id may differ for different HALCON versions

* - the tuple arrays are passed directly to the call -> this method is

* thread-safe

---/

int get_operator_id(const char* name);

Herror T_call_halcon_by_id(int id,

const Hobject in_objs[],

Hobject out_objs[],

const Htuple in_ctrls[],

Htuple out_ctrls[]);

Figure 17.9: Generic calling mechanism for the HALCON/C tuple mode.

header file Hvector.h in %HALCONROOT%\include\halconc for further information.

C

118 The HALCON Parameter Classes

Return Values of HALCON Operators 119

Chapter 18

Return Values of HALCON Operators

HALCON operator return values (type Herror) can be divided into two categories:

• Messages (H_MSG_*) and

• Errors (H_ERR_*).

HALCON operators return H_MSG_TRUE, if no error occurs. Otherwise, a corresponding error value is returned.

Errors in HALCON operators usually result in an exception, i.e., a program abort with the appropriate error mes-
sage in HALCON/C (default exception handling). However, users can disable this mechanism (with a few excep-
tions, like errors in Htuple operators), using

set_check("~give_error");

to provide their own error handling routines. In that case, the operator get_error_text is very useful: This
operator returns the plain text message for any given error code. Finally, the operator

set_check("give_error");

enables the HALCON error handling again. Several examples showing the handling of error messages can be seen
in the file example5.c.

C

120 Return Values of HALCON Operators

Creating Applications With HALCON/C 121

Chapter 19

Creating Applications With HALCON/C

The HALCON distribution contains examples for creating an application with HALCON/C. The following sections
show

• the relevant directories and files (section 19.1 on page 121)

• the list of provided example applications (section 19.2 on page 122)

• the relevant environment variables (section 19.3 on page 122)

• how to create an executable under Windows (section 19.4 on page 123)

• how to create an executable under Linux (section 19.5 on page 124)

19.1 Relevant Directories and Files

The HALCON distribution contains examples for building an application with HALCON/C. Here is an overview
of HALCON/C (Windows notation of paths):

• include\HalconC.h

Include file; contains all user-relevant definitions of the HALCON system and the declarations necessary for
the C interface

• bin\%HALCONARCH%\halcon.dll, lib\%HALCONARCH%\halcon.lib
HALCON library (Windows)

• bin\%HALCONARCH%\halconc.dll, lib\%HALCONARCH%\halconc.lib
HALCON/C library (Windows)

• bin\%HALCONARCH%\halconxl.dll, halconcxl.dll,
lib\%HALCONARCH%\halconxl.lib, halconcxl.lib
Corresponding libraries of HALCON XL (Windows)

• lib/$HALCONARCH/libhalcon.so

HALCON library (Linux)

• lib/$HALCONARCH/libhalconc.so

HALCON/C library (Linux)

• lib/$HALCONARCH/libhalconxl.so,libhalconcxl.so

Corresponding libraries of HALCON XL (Linux)

• include\HProto.h

External function declarations

• %HALCONEXAMPLES%\c\CMakeLists.txt

Example CMake file, which can be used to compile the example programs

C

122 Creating Applications With HALCON/C

• %HALCONEXAMPLES%\c\README.md

Information about building the examples using CMake

• %HALCONEXAMPLES%\c\source\

Directory containing the source files of the example programs

• images\

Images used by the example programs

• help\operators_*

Files necessary for online information

• doc*

Various manuals (in subdirectories)

19.2 Example Programs

There are several example programs in the HALCON/C distribution (%HALCONEXAMPLES%\c\source\). To ex-
periment with these examples, we recommend creating a private copy in your working directory.

example1.c Reads an image and demonstrates several graphics operators

example2.c Introduces several image processing operators

example3.c Shows the usage of the tuple mode

example4.c Shows more (basic) image processing operators like the sobel filter for edge detection, region
growing, thresholding, histograms, the skeleton operator, and the usage of different color lookup
tables

example5.c Describes the HALCON messages and error handling

example6.c Demonstrates the generic calling interface for the tuple mode (T_call_halcon_by_id)

example7.c Describes the handling of RGB images

example8.c Demonstrates the creation of an image from user memory

example_extern8.c Demonstrates the creation of an image from user memory. In contrast to example8.c,
the memory is not copied but pointed to.

example_multithreaded1.c This special case demonstrates the use of HALCON in a multithreaded appli-
cation. Please note that it does not make sense to run the example on a single-processor or
single-core computer.

19.3 Relevant Environment Variables

In the following, we briefly describe the relevant environment variables; see the Installation Guide, section A.4 on
page 39, for more information, especially about how to set these variables. Under Windows, all necessary variables
are automatically set during the installation.

While a HALCON program is running, it accesses several files internally. To tell HALCON where to look for these
files, the environment variable HALCONROOT has to be set. HALCONROOT points to the HALCON home directory; it
is also used in the sample makefile.

The variable HALCONARCH describes the platform on which HALCON is used. For more information, see the
Installation Guide, section 1.4 on page 8.

The variable %HALCONEXAMPLES% indicates where the provided examples are installed.

If user-defined packages are used, the environment variable HALCONEXTENSIONS has to be set. HALCON will
look for possible extensions and their corresponding help files in the directories given in HALCONEXTENSIONS.

Keep the following in mind in connection with the example programs:

19.4 Windows 123

• Default location for images
The default directory for the HALCON operator read_image to look for images is %HALCONEXAMPLES%\
images. If the images reside in different directories, the appropriate path must be set in read_image or the
default image directory must be changed, using set_system("image_dir","..."). This is also possible
with the environment variable HALCONIMAGES. The latter has to be set before starting the program.

• Output terminal under Linux
In the example programs, no host name is passed to open_window. Therefore, the window is opened on the
machine that is specified in the environment variable DISPLAY. If output on a different terminal is desired,
this can be done either directly in open_window(...,"hostname",...) or by specifying a host name in
DISPLAY.

19.4 Creating Applications Under Windows

Your own C programs that use HALCON operators must include the file HalconC.h, which contains all user-
relevant definitions of the HALCON system and the declarations necessary for the C interface. Do this by adding
the following command near the top of your C file:

#include "HalconC.h"

To create an application, you must link the library halconc.lib/.dll to your program.

The example projects show the necessary Visual C++ settings. For the examples, the project should be of the WIN
32 ConsoleApplication type. Please note that the Visual C++ compiler implicitly calls “Update all dependencies”
if a new file is added to a project. Since HALCON runs under Linux as well as under Windows, the include file
HalconC.h includes several Linux-specific headers as well if included under Linux. As they do not exist under
Windows, and as the Visual C++ compiler ignores the operating system-specific cases in the include files, you will
get a number of warning messages about missing header files. These can safely be ignored.

Make sure that the stacksize is sufficient. Some sophisticated image processing problems require up to 1 MB
stacksize, so ensure to configure your compiler accordingly. See your compiler manual for additional information
on this topic.

HALCON XL applications:
Please note that you should use HALCON XL only when you need its features.

!If you want to use HALCON XL, you have to link the libraries halconxl.lib/.dll and halconcxl.lib/.dll

instead of halcon.lib/.dll and halconc.lib/.dll in your project.

Building HALCON Examples With CMake Under Windows

You can find examples that showcase various HALCON use cases and how they are implemented in C in the direc-
tories below %HALCONEXAMPLES%\c. You can build them with CMake by using the provided CMakeLists.txt

file.

To build example programs using CMake, do the following:

1. If required, download CMake (version 3.7.1 or later) from the CMake website and install it.

2. Create a build directory and then run cmake to configure the build and create the application:

mkdir build

cd build

cmake %HALCONEXAMPLES%\c

cmake --build .

To configure, CMake needs to know the location of the HALCON installation, the location of the example
files, and which HALCON architecture to use:

• Specify the location of the HALCON installation via the HALCON_DIR CMake option, or via the
%HALCONROOT% environment variable if the option is not set.

• Specify the location of the HALCON example files via the %HALCONEXAMPLES% environment vari-
able.

C

https://cmake.org/download/

124 Creating Applications With HALCON/C

• Specify the HALCON architecture with the HALCON_ARCHITECTURE CMake option, or via the
%HALCONARCH% environment variable. If neither the option nor the environment variable are set,
CMake will try to guess the architecture based on the host build system.

For general information on how to use CMake, see the CMake documentation.

HALCON XL applications: By default, the examples will be built using the normal version of HALCON.
If you want to build using HALCON XL, set the option HALCON_XL to ON or 1 in CMake during the
configuration step. For this, use the following syntax:

cmake -DHALCON_XL=1 %HALCONEXAMPLES%\c

3. Optionally, you can use the -G option to specify the generator for a new build tree.
For more information about CMake generators, see the CMake documentation.

19.5 Creating Applications Under Linux

Your own C programs that use HALCON operators must include the file HalconC.h, which contains all user-
relevant definitions of the HALCON system and the declarations necessary for the C interface. Do this by adding
the following command near the top of your C file:

#include "HalconC.h"

Using this syntax, the compiler looks for HalconC.h in the current directory only. Alternatively, you can tell
the compiler where to find the file by giving it the -I<pathname> command line flag to denote the include file
directory.

To create an application, link two libraries to your program: The library libhalconc.so contains the various
components of the HALCON/C interface. libhalcon.so is the HALCON library.

HALCON XL applications:
Please note that you should use HALCON XL only when you need its features.!
If you want to use HALCON XL, you have to link the libraries libhalconcxl.so and libhalconxl.so instead.

To link and run applications under Linux, ensure that the system variable LD_LIBRARY_PATH contains the HAL-
CON library path $HALCONROOT/lib/$HALCONARCH.

Building HALCON Examples With CMake Under Linux

You can find examples that showcase various HALCON use cases and how they are implemented in C in the
directories below $HALCONEXAMPLES/c. You can build them with CMake by using the provided CMakeLists.txt
file.

To build example programs using CMake, do the following:

1. If required, download CMake (version 3.7.1 or later) from the CMake website and install it.

2. Create a build directory and then run cmake to configure the build and create the application:

mkdir build

cd build

cmake $HALCONEXAMPLES/c

cmake --build .

To configure, CMake needs to know the location of the HALCON installation, the location of the example
files, and which HALCON architecture to use:

• Specify the location of the HALCON installation via the HALCON_DIR CMake option, or via the
$HALCONROOT environment variable if the option is not set.

• Specify the location of the HALCON example files via the $HALCONEXAMPLES environment variable.

https://cmake.org/runningcmake/
https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html#cmake-generators
https://cmake.org/download/

19.5 Linux 125

• Specify the HALCON architecture with the HALCON_ARCHITECTURE CMake option, or via the
$HALCONARCH environment variable. If neither the option nor the environment variable are set,
CMake will try to guess the architecture based on the host build system.

For general information on how to use CMake, see the CMake documentation.

HALCON XL applications: By default, the examples will be built using the normal version of HAL-
CON. If you want to build using HALCON XL, set the option HALCON_XL to ON or 1 in CMake during
configuration.

3. Optionally, you can use the -G option to specify the generator for a new build tree.
For more information about CMake generators, see the CMake documentation.

C

https://cmake.org/runningcmake/
https://cmake.org/cmake/help/latest/manual/cmake-generators.7.html#cmake-generators

126 Creating Applications With HALCON/C

Typical Image Processing Problems 127

Chapter 20

Typical Image Processing Problems

This final chapter shows the possibilities of HALCON and HALCON/C on the basis of several simple image
processing problems.

20.1 Thresholding

One of the most common HALCON operators is the following:

read_image(&Image,"File_xyz");

threshold(Image,&Thres,0.0,120.0);

connection(Thres,&Conn);

select_shape(Conn,&Result,"area","and",10.0,100000.0);

Step-by-step explanation of the code:

• First, all image pixels with gray values between 0 and 120 (channel 1) are selected.

• The remaining image regions are split into connected components.

• By suppressing regions that are too small, noise is eliminated.

20.2 Detecting Edges

The following HALCON/C sequence is suitable for edge detection:

read_image(&Image,"File_xyz");

sobel_amp(Image,&Sobel,"sum_abs",3);

threshold(Sobel,&Max,30.0,255.0);

skeleton(Max,&Edges);

Some remarks about the code:

• Before filtering edges with the sobel operator, a low pass filter may be useful to suppress noise.

• Apart from the sobel operator, filters like edges_image, roberts, bandpass_image or laplace are suit-
able for edge detection, too.

• The threshold (30.0, in this case) has to be selected depending on the actual images (or depending on the
quality of the edges found in the image).

• Before any further processing, the edges are reduced to the width of a single pixel, using skeleton.

C

128 Typical Image Processing Problems

20.3 Dynamic Threshold

Among other things, the following code is suitable for edge detection, too:

read_image(&Image,"File_xyz");

mean_image(Image,&Lp,11,11);

dyn_threshold(Image,Lp,&Thres,5.0,"light");

• The size of the filter mask (11 x 11, in this case) depends directly on the size of the expected objects (both
sizes are directly proportional to each other).

• In this example, the dynamic threshold operator selects all pixels that are at least 5 gray values brighter than
their surrounding (11 x 11) pixels.

20.4 Simple Texture Transformations

Texture transformations are used to enhance specific image structures. The behavior of the transformation depends
on the filters used (HALCON provides many different texture filters).

read_image(&Image,"File_xyz");

Filter = "ee";

texture_laws(Image,&TT,Filter,2,5);

mean_image(TT,&Lp,31,31);

threshold(Lp,&Seg,30.0,255.0);

• mean_image has to be called with a large mask to achieve a sufficient generalization.

• It is also possible to calculate several different texture transformations and to combine them later, using
add_image, mult_image or a similar operator.

20.5 Eliminating Small Objects

The following morphological operation eliminates small image objects and smoothes the boundaries of the remain-
ing objects:

...

segmentation(Image,&Seg);

gen_circle(&Mask,100.0,100.0,3.5);

opening(Seg,Mask,&Res);

• The size of the circular mask (3.5, in this case) determines the smallest size of the remaining objects.

• It is possible to use any kind of mask for object elimination (not only circular masks).

• segmentation(...) is used to denote a segmentation operator that calculates a tuple of image objects
(Seg).

20.6 Selecting Specific Orientations

Yet another application example of morphological operations is the selection of image objects with specific orien-
tations:

...

segmentation(Image,&Seg);

gen_rectangle2(&Mask,100.0,100.0,0.5,21.0,2.0);

opening(Seg,Mask,&Res);

20.7 Smoothing Region Boundaries 129

• The rectangle’s shape and size (length and width) determine the smallest size of the remaining objects.

• The rectangle’s orientation determines the orientation of the remaining regions (In this case, the main axis
and the horizontal axis form an angle of 0.5 rad).

• Lines with an orientation different from the mask’s (i.e., the rectangle’s) orientation are suppressed.

• segmentation(...) is used to denote a segmentation operator that calculates a tuple of image objects
(Seg).

20.7 Smoothing Region Boundaries

The third (and final) application example of morphological operations covers another common image processing
problem — the smoothing of region boundaries and closing of small holes in the regions:

...

segmentation(Image,&Seg);

gen_circle(&Mask,100.0,100.0,3.5);

closing(Seg,Mask,&Res);

• For the smoothing of region boundaries, circular masks are suited best.

• The mask size determines the degree of the smoothing.

• segmentation(...) is used to denote a segmentation operator that calculates a tuple of image objects
(Seg).

C

130 Typical Image Processing Problems

Part VI

Using HDevEngine

Introducing HDevEngine 133

Chapter 21

Introducing HDevEngine

As the name suggests, HDevEngine is the “engine” of HDevelop. This chapter briefly introduces you to its basic
concepts. Chapter 22 on page 137 explains how to use it in C++ applications, and chapter 23 on page 149 how to
use it in .NET applications (C#, Visual Basic .NET, etc.). Additional information that is independent of the used
programming language can be found in chapter 25 on page 183.

What Can You Do With HDevEngine?

With HDevEngine, you can execute complete HDevelop programs or individual procedures from a C++ applica-
tion or an application that can integrate .NET objects, e.g., C# or Visual Basic .NET. Thus, you can use HDevelop
programs not only for prototyping, but also to completely develop and run the machine vision part of your appli-
cation.

Because HDevEngine acts as an interpreter, you can modify the HDevelop program or procedure without needing
to compile and link the application (if you don’t change the procedure’s signature), as would be necessary if you
export the program or procedure and integrate the code manually. This means that you can easily update the
machine vision part of an application by replacing individual HDevelop files.

What HDevEngine Does Not Do

Note that HDevEngine does not implement the complete functionality of HDevelop, only what is necessary to
execute programs and procedures. In particular, it does not implement the display of variables and results in the
graphics window, i.e., the internal operators like dev_display. However, you can “redirect” these operators to
your own implementation. Thus, you can decide which visualization is important and where and how it is to take
place in your application.

What is HDevEngine?

HDevEngine is provided as a C++ class library and a .NET assembly. It consists of the following classes:

• HDevEngine (C++), HDevEngine (.NET)
This is the main class of HDevEngine. With it you manage global settings.

• HDevProgram (C++), HDevProgram (.NET)
With this class you load an HDevelop program and get general information about it.

• HDevProgramCall (C++), HDevProgramCall (.NET)
With this class you execute a program and get the values of its variables.

• HDevProcedure (C++), HDevProcedure (.NET)
With this class you load an HDevelop procedure and get general information about it.

• HDevProcedureCall (C++), HDevProcedureCall (.NET)
With this class you pass input parameters to an HDevelop procedure, execute it, and retrieve its output
parameters.

H
D

ev
E

ng
in

e

134 Introducing HDevEngine

• HDevOperatorImplCpp (C++),
IHDevOperators, HDevOpMultiWindowImpl, HDevOpFixedWindowImpl (.NET)
As noted above, HDevEngine does not implement internal HDevelop operators like dev_display. All
HDevEngine variants provide a class or interface to create your own implementation for those operators
that are useful in your application. HDevEngine/.NET also includes two convenience classes that provide a
default implementation of the operators.

• HDevEngineException (C++), HDevEngineException (.NET)
Instances of this class are “thrown” if an exception occurs inside HDevEngine, e.g., because the application
tried to load a non-existing program or because of an error inside an operator in the executed program or
procedure.

How to Develop Applications With HDevEngine

With HDevEngine, you can execute complete HDevelop programs or individual local or external HDevelop pro-
cedures. Which way is better depends on the stage of development and on your task:

• When developing the image processing part of your application, you will create an HDevelop program.
Thus, as a first test of your (programmed) application, it is useful to execute the HDevelop program via
HDevEngine. This test will already assure that the general configuration of your application (environment
variables, procedure path, etc.) is correct.

The HDevelop program itself should of course use the same procedures that you plan to execute from the
programmed application.

• After you finished its development, you integrate the image processing part into your programmed applica-
tion by executing the corresponding HDevelop procedures. Typically, you display image processing results
by using the methods of the underlying HALCON programming language interface, i.e., HALCON/C++ for
HDevEngine/C++, or HALCON/.NET for HDevEngine/.NET (C#, Visual Basic .NET, etc.), but you can
also encapsulate recurring display tasks in HDevelop procedures.

• Whether to use local or external procedures depends on the reusability of the procedure. External proce-
dures should be used for widely reusable tasks, e.g., opening the connection to the image acquisition device
and configuring it, or for standard image processing tasks like bar code or data code reading. Groups of
closely related external procedures may be combined into a procedure library to keep them as a unit in a
single file.

In contrast, local procedures are suitable for tasks that are not completely reusable, e.g., for training and
configuring a shape model to find objects. Then, different applications can use their optimized variant of the
procedure instead of creating a single procedure with many parameters and internal switches that suits all
applications.

Using local procedures means that you must load the HDevelop program that contains them. However,
as noted above, loading and executing the corresponding HDevelop program is a good test of the general
configuration of the application.

Parallel Programming With HDevEngine

HDevEngine is thread-safe and reentrant. Settings like the procedure path and the implementation of the display
operators are managed globally for all threads by the main HDevEngine instance. Threads then typically have their
own instance of program or procedure calls. They can share instances of the classes for programs and procedures.

Programs or procedures are only loaded upon setting the procedure path. Therefore, to load multiple programs or
procedures in parallel safely, special care is required:

• Use the import statement to make the external procedures available from within your program. For more
information, see also the HDevelop example program hdevelop/Control/import.hdev.

• Alternatively, set the procedure path (via SetProcedurePath) and create the program or procedure (via
HDevProgram/HDevProcedure) before you start parallelization.

• If the above approaches are not possible, ensure that setting the procedure paths and creating the programs
and procedures both happen within a single critical section to prevent this operation from being interrupted
by other threads. Otherwise, if another thread calls SetProcedurePath after the current thread has called
SetProcedurePath and before the current thread has finished creating its programs or procedures, the
resulting behavior would be undefined.

135

For more information, compare section 25.1 on page 183.

Note that HDevEngine does not safely support subthreads (started with par_start) that continue to run after the
main procedure call returns to application code. A procedure that is intended as entry point for an HDevEngine
application should join all of its started subthreads before returning.

See also the general information about parallel programming with HALCON in section 2.2 on page 16, in particular
the style guide in section 2.2.2 on page 17.

Just-In-Time Compilation of Procedures in HDevEngine

For optimized performance, HDevEngine can also execute compiled procedures using its built-in just-in-time
(JIT) compiler. The compilation is turned on or off using an attribute of the HDevEngine class. If turned on, the
compilation will take place implicitly the first time a procedure is called. It is also possible to explicitly compile
the used procedures of a HDevelop program. See section 22.3 on page 147 (C++) and section 23.3 on page 171
(.NET) for more information about using the JIT compiler.

JIT compilation is not supported for procedures that use any of the following features:

• dev_error_var

• procedure calls using the par_start qualifier

• par_join

• dev_display with a vector expression as variable

• for loop with a vector expression as index variable

• call of any procedure that cannot be JIT compiled due to the above reasons.

If one of these features is found, the corresponding procedure is executed uncompiled as before by HDevEngine.

HDevEngine XL

Like HALCON, the language-dependent versions of HDevEngine are provided in two variants: based on HALCON
and based on HALCON XL. The latter use the XL versions of the HALCON library and of HALCON/C++, and
HALCON/.NET, respectively.

H
D

ev
E

ng
in

e

136 Introducing HDevEngine

HDevEngine in C++ Applications 137

Chapter 22

HDevEngine in C++ Applications

This chapter explains how to use HDevEngine in C++ applications. Section 22.1 on page 137 quickly summarizes
some basic information, e.g., how to compile and link such applications. Section 22.2 on page 138 then explains
how to use HDevEngine based on examples.

An overview about the classes of HDevEngine and their methods can be found in section 25.1 on page 183.

22.1 How to Create an Executable Application With HDevEn-
gine/C++

You create executable HDevEngine applications in a way similar to normal HALCON/C++ applications. Chapter 7
on page 49 describes this in detail; here, we summarize the most important points and include the extensions for
HDevEngine:

1. In your application, you include the main header file HalconCpp.h and HDevEngine’s header file
HDevengineCpp.h and use the corresponding namespaces on Windows and Linux systems:

#include "HalconCpp.h"

include "HDevEngineCpp.h"

using namespace HalconCpp;

using namespace HDevEngineCpp;

2. To compile the application, use the following include paths on Windows systems

/I "$(HALCONROOT)\include" /I "$(HALCONROOT)\include\halconcpp"

/I "$(HALCONROOT)\include\hdevengine"

and on Linux systems

-I$HALCONROOT/include -I$HALCONROOT/include/halconcpp

-I$HALCONROOT/include/hdevengine

3. Link the following libraries on Windows systems

/libpath:"$(HALCONROOT)\lib\$(HALCONARCH)" hdevenginecpp.lib halconcpp.lib

and on Linux systems

-L$HALCONROOT/lib/$HALCONARCH -lhdevenginecpp -lhalconcpp -lhalcon

HDevEngine XL applications: If you want to use HDevEngine XL, link the following libraries on Win-
dows systems

H
D

ev
E

ng
in

e

138 HDevEngine in C++ Applications

Figure 22.1: Executing an HDevelop program that detects fins on a boundary.

/libpath:"$(HALCONROOT)/lib/$(HALCONARCH)" hdevenginecppxl.lib halconcppxl.lib

and on Linux systems

-L$HALCONROOT/lib/$HALCONARCH -lhdevenginecppxl -lhalconcppxl -lhalconxl

22.2 How to Use HDevEngine/C++

This section explains how to use HDevEngine based on example applications, which reside in the subdirectory
%HALCONEXAMPLES%\hdevengine\cpp. Like the examples for HALCON/C++ described in chapter 7 on page
49, they are provided with CMake files for Linux, and Windows systems.

The example applications show how to

• execute an HDevelop program (section 22.2.1 on page 138),

• execute HDevelop procedures (section 22.2.2 on page 140),

• implement display operators (section 22.2.3 on page 143),

• error handling (section 22.2.4 on page 144).

Section 22.2.5 on page 146 contains additional information for creating multithreaded applications using HDev-
Engine.

22.2.1 Executing an HDevelop Program

In this section, we explain how to load and execute an HDevelop program with HDevEngine. The code fragments
stem from the example application exec_program (source file exec_program.cpp), which checks the boundary
of a plastic part for fins. Figure 22.1 on page 138 shows a screenshot of the application.

22.2.1.1 Step 1: Initialization

First, we include the main header files of HALCON/C++ and of HDevEngine and the corresponding names-
paces. Note that in this example application the HDevEngine header file is already included via the header file
my_hdevoperatorimpl.h so we don’t have to include the HDevEngineCpp.h header file explicitly:

#include "HalconCpp.h"

include "my_hdevoperatorimpl.h"

using namespace HalconCpp;

using namespace HDevEngineCpp;

22.2 How to Use HDevEngine/C++ 139

The main procedure just calls a procedure that does all the work of the example. First, we create an instance of the
main HDevEngine class HDevEngine.

HDevEngine my_engine;

The path to the HDevelop program and the external procedure path are stored in string variables, with a suitable
syntax for the used platform. Note that in Windows applications you can use both / and \ in path strings:

std::string halcon_examples =

(std::string)HSystem::GetSystem("example_dir")[0].S();

std::string program_path(halcon_examples), ext_proc_path(halcon_examples);

program_path += "/hdevengine/hdevelop/fin_detection.hdev";

ext_proc_path += "/hdevengine/procedures";

If the HDevelop program calls external procedures, you must set the external procedure path with the method
SetProcedurePath:

my_engine.SetProcedurePath(ext_proc_path.c_str());

22.2.1.2 Step 2: Load Program

Now, we create an instance of the class HDevProgram and load the HDevelop program with the method
LoadProgram. Note that LoadProgram changes the working directory if a program is loaded successfully.

The call is encapsulated in a try...catch-block to handle exceptions occurring in the HDevEngine method,
e.g., because the file name was not specified correctly. A detailed description of error handling can be found in
section 22.2.4 on page 144.

HDevProgram my_program;

try

{

my_program.LoadProgram(program_path.c_str());

}

catch (HDevEngineException& hdev_exception)

...

22.2.1.3 Step 3: Execute Program

If the program could be loaded successfully, we execute the program with the method Execute and store the
returned instance of the class HDevProgramCall in a variable for later use:

HDevProgramCall prog_call = my_program.Execute();

22.2.1.4 Step 4: Get Results

That’s all you need to do to execute an HDevelop program. You can also access its “results”, i.e., its variables
with the method GetCtrlVarTuple. In the example program, the area of the extracted fin is queried and then
displayed:

HTuple result = prog_call.GetCtrlVarTuple("FinArea");

printf("\nFin Area: %f\n\n", result[0].D());

Note that program variables can only be accessed when the program has terminated.

H
D

ev
E

ng
in

e

140 HDevEngine in C++ Applications

Figure 22.2: Executing an external HDevelop procedure that detects fins on a boundary.

22.2.1.5 General: Display Results

How to display results while the program is running is described in section 22.2.3 on page 143.

22.2.2 Executing HDevelop Procedures

This section describes example applications that execute HDevelop procedures:

• a single external procedure (section 22.2.2.1 on page 140) and

• multiple local and external procedures (section 22.2.2.8 on page 142).

22.2.2.1 Executing an External HDevelop Procedure

In this section, we explain how to load and execute an external HDevelop procedure with HDevEngine. The code
fragments in the following stem from the example application exec_extproc (source file exec_extproc.cpp),
which, like the example described in the previous section, checks the boundary of a plastic part for fins. Figure 22.2
on page 140 shows a screenshot of the application.

In contrast to the previous example, the result display is programmed explicitly in HALCON/C++ instead of relying
on the internal display operators. How to provide your own implementation of the internal display operators is
described in section 22.2.3 on page 143.

22.2.2.2 Step 1: Initialization

As when executing an HDevelop program, we include the main header files of HALCON/C++ and of HDevEn-
gine and the namespaces. In this example application the HDevEngine header file is included via the header file
my_error_output.h so we don’t need to include it explicitly. The main procedure just calls the procedure run

that does all the work of the example. We create an instance of the main HDevEngine class HDevEngine and
directly set the external procedure path with the method SetProcedurePath. If the external procedure is from
a procedure library, the external procedure path may include the name of the library file.

22.2 How to Use HDevEngine/C++ 141

#include "HalconCpp.h"

include "my_error_output.h"

using namespace HalconCpp;

using namespace HDevEngineCpp;

void run(void)

{

std::string halcon_examples =

(std::string)HSystem::GetSystem("example_dir")[0].S();

std::string ext_proc_path(halcon_examples);

...

HDevEngine().SetProcedurePath(ext_proc_path.c_str());

DetectFin();

}

22.2.2.3 Step 2: Load Procedure

In the “action” routine, we load the external procedure with the constructor of the class HDevProcedure,
specifying the name of the procedure, and store the returned procedure call in an instance of the
class HDevProcedureCall. The call is encapsulated in a try...catch-block to handle excep-
tions occurring in the constructor, e.g., because the file name or the procedure path was not speci-
fied correctly. A detailed description of error handling can be found in section 22.2.4 on page 144.

void DetectFin()

{

try

{

HDevProcedure proc("detect_fin");

HDevProcedureCall proc_call(proc);

Before executing the procedure, we open and initialize the graphics window in which the results are to be
displayed and load an example image sequence:

const char* image_sequ_str = "fin";

HWindow win(00, 100, 384, 288);

win.SetPart(0, 0, 575, 767);

win.SetDraw("margin");

win.SetLineWidth(4);

HFramegrabber fg("File", 1, 1, 0, 0, 0, 0, "default", -1, "default", -1,

"default", image_sequ_str, "default", -1, -1);

22.2.2.4 Step 3: Set Input Parameters of Procedure

Each image should now be processed by the procedure, which has the following signature, i.e., it expects an image
as (iconic) input parameter and returns the detected fin region and its area as iconic and control output parameter,
respectively:

procedure detect_fin (Image: FinRegion: : FinArea)

We pass the image as input object by storing it in the instance of HDevProcedureCall with the method
SetInputIconicParamObject. Which parameter to set is specified via its index (starting with 1); there is also a
method to specify it via its name (see section 25.1.5 on page 194):

H
D

ev
E

ng
in

e

142 HDevEngine in C++ Applications

for (long i = 0; i < 3; i++)

{

HImage image = fg.GrabImage();

proc_call.SetInputIconicParamObject(1, image);

As as alternative to passing parameters, you can also use global variables in HDevEngine (compare
the HDevelop User’s Guide, section 8.3.2 on page 252). You set the value of a global variable with
the methods SetGlobalIconicVarObject or SetGlobalCtrlVarTuple and query it with the methods
GetGlobalIconicVarObject and GetGlobalCtrlVarTuple.
However, take care not to overwrite the value of a variable of one program with that of another: Each global
variable can have only one value at a time for all running HDevEngine instances.

22.2.2.5 Step 4: Execute Procedure

Now, we execute the procedure with the method Execute.

proc_call.Execute();

22.2.2.6 Step 5: Get Output Parameters of Procedure

If the procedure was executed successfully, we can access its results, i.e., the fin region and its area, with the
methods GetOutputIconicParamObject and GetOutputCtrlParamTuple of the class HDevProcedureCall;
again, you can specify the parameter via its index or name (see section 25.1.5 on page 194).

HRegion fin_region = proc_call.GetOutputIconicParamObject(1);

HTuple fin_area;

proc_call.GetOutputCtrlParamTuple(1, &fin_area);

22.2.2.7 Step 6: Display Results of Procedure

Now, we display the results in the graphics window. Note how we access the area by selecting the first element
of the returned tuple:

char fin_area_str[200];

sprintf(fin_area_str, "Fin Area: %ld", (long)(fin_area[0].L()));

win.DispImage(image);

win.SetColor("red");

win.DispRegion(fin_region);

win.SetColor("white");

win.SetTposition(150, 20);

win.WriteString(fin_area_str);

22.2.2.8 Executing Local and External HDevelop Procedures

The example application exec_procedures (source file exec_procedures.cpp) executes local and external
HDevelop procedures with HDevEngine. It mimics the behavior of the HDevelop program described in sec-
tion 22.2.1 on page 138. The display of results is partly programmed explicitly and partly delegated to an HDe-
velop procedure, using the implementation of the internal display operators described in section 22.2.3 on page
143.

Local and external procedures are created and executed in exactly the same way. The only difference is that in order
to use a local procedure, you must load the program it is contained in, whereas to load external procedures you must
set the procedure path. HDevProcedure provides different constructors to facilitate this task (see section 25.1.4
on page 191).

22.2 How to Use HDevEngine/C++ 143

22.2.3 Display

In this section, we explain how to provide your own implementation of HDevelop’s internal display operators. The
files my_hdevoperatorimpl.h and my_hdevoperatorimpl.cpp contain an example implementation, which
is used in the applications exec_program (source file exec_program.cpp), which was already discussed in
section 22.2.1 on page 138, and exec_procedures (source file exec_procedures.cpp).

In fact, HDevEngine does not provide an implementation of the internal display operators but provides the
class HDevOperatorImplCpp, which contains empty virtual methods for all those operators that you can im-
plement yourself. The methods are called like the object-oriented version of the operators, e.g., DevDisplay for
dev_display and have the same parameters (see section 25.1.6 on page 196 for the definition of the class).

The first step towards the implementation is to derive a child of this class and to specify all meth-
ods that you want to implement. The example file implements the operators dev_open_window,
dev_set_window_extents, dev_set_part, dev_set_window, dev_get_window, dev_clear_window,
dev_clear_window, dev_close_window, dev_display, dev_set_draw, dev_set_shape, dev_set_color,
dev_set_colored, dev_set_lut, dev_set_paint, and dev_set_line_width:

class MyHDevOperatorImpl : public HDevEngineCpp::HDevOperatorImplCpp

{

public:

virtual int DevOpenWindow(const HalconCpp::HTuple& row,

const HalconCpp::HTuple& col,

const HalconCpp::HTuple& width,

const HalconCpp::HTuple& height,

const HalconCpp::HTuple& background,

HalconCpp::HTuple* win_id);

virtual int DevSetWindowExtents(const HalconCpp::HTuple& row,

const HalconCpp::HTuple& col,

const HalconCpp::HTuple& width,

const HalconCpp::HTuple& height);

virtual int DevSetPart(const HalconCpp::HTuple& row1,

const HalconCpp::HTuple& col1,

const HalconCpp::HTuple& row2,

const HalconCpp::HTuple& col2);

virtual int DevSetWindow(const HalconCpp::HTuple& win_id);

virtual int DevGetWindow(HalconCpp::HTuple* win_id);

virtual int DevClearWindow();

virtual int DevCloseWindow();

virtual int DevDisplay(const HalconCpp::HObject& obj);

virtual int DevDispText(const HalconCpp::HTuple& string,

const HalconCpp::HTuple& coordSystem,

const HalconCpp::HTuple& row,

const HalconCpp::HTuple& column,

const HalconCpp::HTuple& color,

const HalconCpp::HTuple& GenParamName,

const HalconCpp::HTuple& GenParamValue);

virtual int DevSetDraw(const HalconCpp::HTuple& draw);

virtual int DevSetContourStyle(const HalconCpp::HTuple& style);

virtual int DevSetShape(const HalconCpp::HTuple& shape);

virtual int DevSetColor(const HalconCpp::HTuple& color);

virtual int DevSetColored(const HalconCpp::HTuple& colored);

virtual int DevSetLut(const HalconCpp::HTuple& lut);

virtual int DevSetPaint(const HalconCpp::HTuple& paint);

virtual int DevSetLineWidth(const HalconCpp::HTuple& width);

};

In addition to these methods, the class contains methods to handle multiple graphics windows. These methods use
a second class that manages all open windows. This class is thread-safe and reentrant but not described in detail in
this section.

H
D

ev
E

ng
in

e

144 HDevEngine in C++ Applications

HalconCpp::HTuple GetCurrentWindow() const;

size_t GetCount() const;

void AddWindow(const HalconCpp::HTuple& id);

HalconCpp::HTuple PopWindow();

Hlong SetWindow(const HalconCpp::HTuple& id);

class WinIdContainer

In the executed HDevelop program, two graphics windows are used, one for the main display and one for zooming
into the image (see figure 22.1 on page 138).

To use the implementation of HDevOperatorImplCpp, you include the header file:

#include "my_hdevoperatorimpl.h"

With the method SetHDevOperatorImpl, you pass an instance of your version of HDevOperatorImplCpp to
HDevEngine, which then calls its methods when the corresponding operator is used in the HDevelop program or
procedure.

my_engine.SetHDevOperatorImpl(&op_impl);

Now, we take a closer look at the implementation of the display operators in the example. It tries to mimic the
behavior in HDevelop: Multiple graphics windows can be open, with one being “active” or “current”. The methods
for the internal display operators simply call the corresponding non-internal display operator: For example, a call
to dev_display in the HDevelop program is “redirected” in DevDisplay to disp_obj, with the iconic object to
display and the handle of the active window as parameters:

int MyHDevOperatorImpl::DevDisplay(const HObject& obj)

{

HCkDev(DispObj(obj, GetCurrentWindow()));

}

Similarly, dev_set_draw is redirected in DevSetDraw to set_draw:

int MyHDevOperatorImpl::DevSetDraw(const HTuple& draw)

{

HCkDev(SetDraw(GetCurrentWindow(), draw));

}

As you can see, these operators can be implemented quite easily. The implementation of the operators for handling
graphics windows is not described here. We recommend using the example implementation as it is because it
provides all the necessary functionality for single- and multithreaded applications.

22.2.4 Error Handling

In this section, we take a closer look at exceptions in HDevEngine. The code fragments in the following stem from
the example application error_handling (source file error_handling.cpp), which provokes different types of
exceptions and “catches” them.

HDevEngine “throws” exceptions in form of the class HDevEngineException, which contains the type (category)
of the exception, a message describing the exception, and, depending on the exception type, information like the
name of the executed procedure or the HALCON error code (see section 25.1.7 on page 196 for the declaration of
the class).

The example code for displaying information about exceptions in a graphics window is contained in the files
my_error_output.cpp and my_error_output.h. You can use it in your application by including the header
file:

#include "my_error_output.h"

22.2 How to Use HDevEngine/C++ 145

The files provide two procedures. The simpler one displays only the error message and waits for a mouse click to
continue:

void DispMessage(const char* message)

{

HWindow win(100, 100, ERR_WIN_WIDTH_SIMPLE, ERR_WIN_HEIGHT_SIMPLE, NULL,

"visible", "");

win.SetPart(0, 0, ERR_WIN_HEIGHT_SIMPLE - 1, ERR_WIN_WIDTH_SIMPLE - 1);

win.SetColor("yellow");

win.SetTposition(10, 10);

WriteMessageNL(win, message);

// wait for mouse click to continue

win.SetColor("red");

win.SetTposition(ERR_WIN_HEIGHT_SIMPLE / 2 + 10, ERR_WIN_WIDTH_SIMPLE / 2);

win.WriteString("...click into window to continue");

win.Click();

}

The more complex one prints all available information for the exception (only relevant code shown):

void DispErrorMessage(const HDevEngineCpp::HDevEngineException& exception,

const char* context_msg /*=NULL*/)

{

char text[2000];

HWindow win(100, 100, ERR_WIN_WIDTH_COMPLEX, ERR_WIN_HEIGHT_COMPLEX, NULL,

"visible", "");

WriteMessageNL(win, exception.Message());

sprintf(text, " Error category: <%d : %s>", exception.Category(),

exception.CategoryText());

WriteMessageNL(win, text);

sprintf(text, " Error code: <%d>", exception.HalconErrorCode());

WriteMessageNL(win, text);

sprintf(text, " Procedure: <%s>", exception.ExecProcedureName());

WriteMessageNL(win, text);

sprintf(text, " Line: <%d : %s>", exception.ProgLineNum(),

exception.ProgLineName());

WriteMessageNL(win, text);

}

This procedure is called when an exception occurs. The example provokes different errors and displays the corre-
sponding information; some of them are described in the following. Figure 22.3 on page 146 displays an exception
that occurred because the application tried to load a non-existing HDevelop program (category ExceptionFile).

try

{

program.LoadProgram(wrong_program_path.c_str());

}

catch (HDevEngineException& hdev_exception)

{

DispErrorMessage(hdev_exception,

"Error #1: Try to load a program that does not exist");

}

The same exception category occurs when a program is loaded whose external procedures are not found (see
figure 22.4 on page 146).

The exception displayed in figure 22.5 on page 146 occurs because an input iconic parameter is not initialized
(category ExceptionInpNotInit). It contains very detailed information about where the error occurred and why.

H
D

ev
E

ng
in

e

146 HDevEngine in C++ Applications

Figure 22.3: Content of the exception if an HDevelop program could not be found.

Figure 22.4: Content of the exception if external procedures of an HDevelop program could not be loaded.

The exception displayed in figure 22.6 on page 147 is provoked by calling an operator with an invalid parameter
(category ExceptionCall).

With the method UserData (see section 25.1.7 on page 196), you can also access user exception data
that is thrown within an HDevelop program or procedure by the operator throw similarly to the operator
dev_get_exception_data.

In case of an exception (which is not caught within the procedure) the procedure call is cleaned up. This means all
subthreads are destroyed and all values of input and output parameters are cleared. Therefore, we recommend that
you always set all input parameters before executing a call even if some of them did not change.

Note that you can configure the behavior of HDevEngine when loading programs or procedures that contain invalid
lines or unresolved procedure calls with the method SetEngineAttribute (see section 25.1.1 on page 184).

22.2.5 Creating Multithreaded Applications

In the example mfc\exec_procedures_mt_mfc , three threads execute HDevelop procedures for image acquisi-
tion, data code reading, and visualization in parallel (see figure 22.7 on page 147). Please have a look at the example
source files (in the directory mfc\exec_procedures_mt_mfc\source\) to see how the threads synchronize their
input and output data.

Figure 22.5: Content of the exception if an input parameter was not initialized.

22.3 Using the Just-in-time Compiler With HDevEngine/C++ 147

Figure 22.6: Content of the exception if an error occurred in a HALCON operator call.

Figure 22.7: Example program with three threads performing image acquisition, data code reading, and visualization
in parallel.

The example exec_programs_mt (source file exec_programs_mt.cpp) shows how one or several different HDe-
velop programs can be executed in different threads in parallel. Note that it is kept very general and does not realize
a specific application.

The HDevelop program(s) must be passed as command line arguments. Optionally, you can pass for every program
the number of threads and/or how often the program should be performed consecutively within each thread. The
command line parameters are explained when calling the executable without parameters.

22.2.6 Executing an HDevelop Program with Vector Variables

The example application use_vector_variables shows how to load and execute an HDevelop program that
contains vector variables in HDevengine/C++. In the example two vectors are used for processing: one con-
taining the input images and one containing scaling factors. When executing the program the gray values of
the input images are scaled according to the scaling factors. Please have a look at the example source file
use_vector_variables.cpp for more details on how to work with vector variables in HDevengine/C++.

22.3 Using the Just-in-time Compiler With HDevEngine/C++

The just-in-time compilation of procedures needs to be enabled in your instance of the HDevEngine class:

H
D

ev
E

ng
in

e

148 HDevEngine in C++ Applications

bool exec_compiled = true;

...

HDevEngine my_engine;

// enable or disable execution of compiled procedures

my_engine.SetEngineAttribute("execute_procedures_jit_compiled",

exec_compiled ? "true" : "false");

Procedures (and procedures referenced by it) are compiled at the moment a corresponding instance of
HDevProcedureCall or HDevProgramCall is created.

You can also explicitly pre-compile all used procedures of a HDevelop program or procedure using the method
CompileUsedProcedures of HDevProgram or HDevProcedure, respectively.

In the following example, all used procedures of a procedure call are just-in-time compiled:

HDevProgram my_program(program_path.c_str());

HDevProcedure proc_fib(my_program, "fib");

...

proc_fib.CompileUsedProcedures();

HDevEngine in .NET Applications 149

Chapter 23

HDevEngine in .NET Applications

This chapter explains how to use HDevEngine in C# and Visual Basic .NET applications. Section 23.1 on page 149
quickly summarizes some basic information about creating HDevEngine applications with .NET Core and .NET
Framework. Section 23.2 on page 149 then explains how to use HDevEngine/.NET based on examples.

23.1 Basics

A short reference of the C++ classes for the HDevEngine can be found in section 25.1 on page 183. The .NET
classes are very similar; their exact definition can be seen in the online help of Visual Studio (see section 11.1.1 on
page 66).

23.1.1 Adding HDevEngine/.NET to a .NET Core Application

No HDevEngine-specific actions are required. See section 10.3.1 on page 62.

23.1.2 Adding HDevEngine/.NET to a .NET Framework Application

To use HDevEngine in Visual Studio .NET, you must add a reference to the HDevEngine/.NET assembly
hdevenginedotnet.dll via the Solution Explorer. See section 10.3.2 on page 63.

HDevEngine XL applications: If you want to use HDevEngine/.NET XL, you must add the XL versions of the
HALCON/.NET and HDevEngine/.NET assembly instead.

23.2 Examples

23.2.1 Creating an HDevEngine/.NET Application

This section explains how to create a simple HDevEngine/.NET applicaton with .NET Core. For a more compre-
hensive description, read section 23.2.2 on page 150.

1. Install the .NET Core SDK for your system.

2. Run the following commands in a command line:

dotnet new console -n hdevengine-example

cd hdevengine-example

dotnet add package MVTec.HalconDotNet -v 23050

H
D

ev
E

ng
in

e

150 HDevEngine in .NET Applications

3. Change the content of Program.cs to:

using System;

using System.Diagnostics;

using System.IO;

using HalconDotNet;

namespace hdevengine_example

{

class Program

{

static void Main(string[] args)

{

string ExampleDir = HSystem.GetSystem("example_dir");

string ProcedurePath = "/hdevengine/procedures";

HDevEngine Engine = new HDevEngine();

Engine.SetProcedurePath(Path.GetFullPath(ExampleDir + ProcedurePath));

HImage Image = new HImage("fin2");

HDevProcedure Procedure = new HDevProcedure("detect_fin");

HDevProcedureCall ProcCall = new HDevProcedureCall(Procedure);

ProcCall.SetInputIconicParamObject("Image", Image);

ProcCall.Execute();

HTuple FinArea = ProcCall.GetOutputCtrlParamTuple("FinArea");

Console.WriteLine(String.Format("Fin Area: {0}", FinArea.I));

}

}

}

4. To run the application type the following command in a command line:

dotnet run

As as result, you should see the following output ’Fin Area: 1634’.

23.2.2 Using HDevEngine/.NET

This section explains how to use HDevEngine/.NET with the help of example applications written in C#, which
reside in the subdirectory %HALCONEXAMPLES%\hdevengine\c#. Most examples use Windows Forms, which is
only available for .NET Core on Windows. The HDevEngine/.NET specific information also applies to .NET Core
in general.

For some examples, Visual Basic .NET versions are available, which reside in the subdirectory
%HALCONEXAMPLES%\hdevengine\vb.net. They are identical except for the standard differences between the
two languages.

The example applications show how to

• execute an HDevelop program (section 23.2.3 on page 151),

• executeHDevelop procedures (section 23.2.4 on page 152),

• implement display operators (section 23.2.5 on page 157),

• error handling (section 23.2.6 on page 158),

• multithreading (section 23.2.7 on page 159).

23.2 Examples 151

Figure 23.1: Executing an HDevelop program that detects fins on a boundary.

23.2.3 Executing an HDevelop Program

In this section, we explain how to load and execute an HDevelop program with HDevEngine. The code fragments
stem from the example application ExecProgram, which checks the boundary of a plastic part for fins. Figure 23.1
on page 151 shows a screenshot of the application; it contains two buttons to load and execute the HDevelop
program.

23.2.3.1 Step 1: Initialization

First, we create a global instance of the main HDevEngine class HDevEngine.

private HDevEngine MyEngine = new HDevEngine();

Upon loading the form, we store the path to the HDevelop program and set the external procedure path with the
method SetProcedurePath:

String ProgramPathString;

private void ExecProgramForm_Load(object sender, System.EventArgs e)

{

string ExampleDir = HSystem.GetSystem("example_dir");

string ProcedurePath = "/hdevengine/procedures";

MyEngine.SetProcedurePath(Path.GetFullPath(ExampleDir + ProcedurePath));

ProgramPathString = Path.GetFullPath(

ExampleDir + "/hdevengine/hdevelop/fin_detection.hdev"

);

}

Note that the latter is only necessary if the HDevelop program calls external procedures.

23.2.3.2 Step 2: Load Program

When you click the button to load the HDevelop program, an instance of the class HDevProgram is created, with
the path of the program as parameter. Furthermore, an instance of HDevProgramCall is created for later use. Note
that the working directory will be changed if a program is loaded.

Exceptions occurring in the constructors, e.g., because the file name was not specified correctly, are handled with
the standard C# error handling mechanism:

H
D

ev
E

ng
in

e

152 HDevEngine in .NET Applications

private void LoadBtn_Click(object sender, System.EventArgs e)

{

try

{

HDevProgram Program = new HDevProgram(ProgramPathString);

ProgramCall = new HDevProgramCall(Program);

}

catch (HDevEngineException Ex)

{

MessageBox.Show(Ex.Message, "HDevEngine Exception");

return;

}

...

}

More information on error handling can be found in section 23.2.6 on page 158.

23.2.3.3 Step 3: Execute Program

When you click the button to execute the program, the method Execute is called:

private void RunProgram()

{

try

{

try

{

ProgramCall.Execute();

}

...

}

}

23.2.3.4 Step 4: Get Results

That’s all you need to do to execute a HDevelop program. You can also access its “results”, i.e., its variables
with the method GetCtrlVarTuple. In the example program, the area of the extracted fin is queried and then
displayed:

double FinArea;

FinArea = ProgramCall.GetCtrlVarTuple("FinArea");

Window.SetTposition(150, 20);

Window.WriteString("Fin Area: ");

Note that program variables can only be accessed when the program has terminated.

23.2.3.5 General: Display Results

How to display results while the program is running is described in section 23.2.5 on page 157.

23.2.4 Executing HDevelop Procedures

This section describes example applications that execute HDevelop procedures:

• A single external procedure (section 23.2.4.1 on page 153)

• Multiple local and external procedures (section 23.2.4.8 on page 155).

23.2 Examples 153

Figure 23.2: Executing an external HDevelop procedure that detects fins on a boundary.

23.2.4.1 Executing an External HDevelop Procedure

In this section, we explain how to load and execute an external HDevelop procedure with HDevEngine. The code
fragments in the following stem from the example application ExecExtProc, which, like the example described
in the previous section, checks the boundary of a plastic part for fins. Figure 23.2 on page 153 shows a screenshot
of the application; it contains two buttons to load and execute the HDevelop procedure.

In contrast to the previous example, the result display is programmed explicitly instead of relying on the internal
display operators.

23.2.4.2 Step 1: Initialization

As when executing an HDevelop program, we create a global instance of the main HDevEngine class HDevEngine
and set the external procedure path with the method SetProcedurePath upon loading the form (code for con-
structing the path omitted). If the external procedure is from a procedure library, the external procedure path may
include the name of the library file.

private HDevEngine MyEngine = new HDevEngine();

private void ExecExtProcForm_Load(object sender, System.EventArgs e)

{

string ProcedurePath = "/hdevengine/procedures";

...

MyEngine.SetProcedurePath(Path.GetFullPath(ExampleDir + ProcedurePath));

}

In contrast to the C++ version of this example application, we want to display the results not in a free-floating
graphics window, but within the form, i.e, inside an instance of HSmartWindowControl (also see section 11.7 on
page 78 and section 11.5 on page 76). For calling the HALCON operators, we declare a global variable of the
class HWindow for the underlying HALCON window; upon loading the form, we set this variable to the HALCON
window in the HSmartWindowControl and initialize the window:

private HWindow Window;

private void WindowControl_Load(object sender, EventArgs e)

{

Window = WindowControl.HalconWindow;

Window.SetDraw("margin");

Window.SetLineWidth(4);

}

23.2.4.3 Step 2: Load Procedure

When you click the button Load, the HDevelop procedure is loaded with the constructor of the class
HDevProcedure, specifying the name of the procedure, and a corresponding procedure call is created as an in-
stance of the class HDevProcedureCall. Exceptions occurring in the constructors, e.g., because the file name or

H
D

ev
E

ng
in

e

154 HDevEngine in .NET Applications

the procedure path was not specified correctly, are handled with the standard C# error handling mechanism. More
information on error handling can be found in section 23.2.6 on page 158.

private void LoadBtn_Click(object sender, System.EventArgs e)

{

try

{

HDevProcedure Procedure = new HDevProcedure("detect_fin");

ProcCall = new HDevProcedureCall(Procedure);

}

catch (HDevEngineException Ex)

{

MessageBox.Show(Ex.Message, "HDevEngine Exception");

return;

}

}

Executing a procedure consists of multiple steps. First, we load an example image sequence:

private void ExecuteBtn_Click(object sender, System.EventArgs e)

{

HFramegrabber Framegrabber = new HFramegrabber();

Framegrabber.OpenFramegrabber("File", 1, 1, 0, 0, 0, 0, "default",

-1, "default", -1, "default", "fin.seq", "default", -1, -1);

23.2.4.4 Step 3: Set Input Parameters of Procedure

Each image should now be processed by the procedure, which has the following signature, i.e., it expects an image
as (iconic) input parameter and returns the detected fin region and its area as iconic and control output parameter,
respectively:

procedure detect_fin (Image: FinRegion: : FinArea)

We pass the image as an input object by storing it in the instance of HDevProcedureCall with the method
SetInputIconicParamObject. Which parameter to set is specified via its name (as an alternative, you can
specify it via its index):

HImage Image = new HImage();

HRegion FinRegion;

HTuple FinArea;

for (int i = 0; i <= 2; i++)

{

Image.GrabImage(Framegrabber);

Image.DispObj(Window);

ProcCall.SetInputIconicParamObject("Image", Image);

As as alternative to passing parameters, you can also use global variables in HDevEngine (compare
the HDevelop User’s Guide, section 8.3.2 on page 252). You set the value of a global variable with
the methods SetGlobalIconicVarObject or SetGlobalCtrlVarTuple and query it with the methods
GetGlobalIconicVarObject and GetGlobalCtrlVarTuple.
However, take care not to overwrite the value of a variable of one program with that of another: Each global
variable can have only one value at a time for all running HDevEngine instances.

23.2.4.5 Step 4: Execute Procedure

Now, we execute the procedure with the method Execute.

ProcCall.Execute();

23.2 Examples 155

Figure 23.3: Screenshot of the application.

23.2.4.6 Step 5: Get Output Parameters of Procedure

If the procedure was executed successfully, we can access its results, i.e., the fin region and its area, with the
methods GetOutputIconicParamRegion and GetOutputCtrlParamTuple of the class HDevProcedureCall;
again, you can specify the parameter via its name or index. Note that you can get iconic output ob-
jects either as instances of the corresponding class (here, HRegion) or as instance of HObject by using
GetOutputIconicParamObject.

FinRegion = ProcCall.GetOutputIconicParamRegion("FinRegion");

FinArea = ProcCall.GetOutputCtrlParamTuple("FinArea");

23.2.4.7 Step 6: Display Results of Procedure

Finally, we display the results in the graphics window:

this.Invoke((MethodInvoker)delegate

{

Image.DispObj(Window);

Window.SetColor("red");

Window.DispObj(FinRegion);

Window.SetColor("white");

Window.SetTposition(150, 20);

Window.WriteString("FinArea: " + FinArea.D);

});

23.2.4.8 Executing Local and External HDevelop Procedures

The example application ExecProcedures executes local and external HDevelop procedures with HDevEngine.
It mimics the behavior of the HDevelop program described in section 23.2.3 on page 151. The display of results
is partly programmed explicitly and partly delegated to an HDevelop procedure, using the implementation of the
internal display operators described in section 23.2.5 on page 157. Figure 23.3 on page 155 shows a screenshot of
the application.

In the following, we briefly describe parts of the code.

Local and external procedures are created and executed in exactly the same way. The only difference is that in
order to use a local procedure, you must load the program it is contained in, whereas to load external procedures
you must set the procedure path. In the example, the image processing procedure is local, the other external. Note
that the code for constructing the program and procedure path is omitted.

H
D

ev
E

ng
in

e

156 HDevEngine in .NET Applications

private HDevProcedureCall InitAcqProcCall;

private HDevProcedureCall ProcessImageProcCall;

private HDevProcedureCall VisualizeDetailsProcCall;

private void ExecProceduresForm_Load(object sender, System.EventArgs e)

{

string ProcedurePath = "/hdevengine/procedures";

...

MyEngine.SetProcedurePath(Path.GetFullPath(ExampleDir + ProcedurePath));

}

private void LoadBtn_Click(object sender, System.EventArgs e)

{

try

{

HDevProgram Program = new HDevProgram(ProgramPathString);

HDevProcedure InitAcqProc = new HDevProcedure(Program, "init_acquisition");

HDevProcedure ProcessImageProc = new HDevProcedure(Program, "detect_fin");

HDevProcedure VisualizeDetailsProc =

new HDevProcedure(Program, "display_zoomed_region");

InitAcqProcCall = new HDevProcedureCall(InitAcqProc);

ProcessImageProcCall = new HDevProcedureCall(ProcessImageProc);

VisualizeDetailsProcCall = new HDevProcedureCall(VisualizeDetailsProc);

...

}

One of the procedures opens the image acquisition device. It returns the corresponding handle, which we store in
an instance of the class HFramegrabber.

private HFramegrabber Framegrabber;

private void InitAcqBtn_Click(object sender, System.EventArgs e)

{

InitAcqProcCall.Execute();

Framegrabber =

new HFramegrabber(InitAcqProcCall.GetOutputCtrlParamTuple("AcqHandle").H);

...

}

In the example application, the device is closed when the application terminates and calls the finalizer of the class
HFramegrabber, which in turn calls the operator CloseFramegrabber. If you use an HDevelop procedure for
closing the connection to the device, you would invalidate the handle so that the finalizer raises an exception.

As in the previous example, the results of image processing (button Process Image) are displayed “manually”
by calling HALCON/.NET operators. In contrast, when you click the button Visualize Details, an HDevelop
procedure is executed that zooms onto the extracted fin. For this, we pass an implementation of HDevelop’s
internal display operators (see section 23.2.5 on page 157 for more information about the implementation classes)
and remove it again after the procedure has been executed.

private void VisualizeDetailsBtn_Click(object sender, System.EventArgs e)

{

MyEngine.SetHDevOperators(MyHDevOperatorImpl);

VisualizeDetailsProcCall.SetInputIconicParamObject("Image", Image);

VisualizeDetailsProcCall.SetInputIconicParamObject("Region", FinRegion);

VisualizeDetailsProcCall.SetInputCtrlParamTuple("ZoomScale", 2);

VisualizeDetailsProcCall.SetInputCtrlParamTuple("Margin", 5);

VisualizeDetailsProcCall.Execute();

MyEngine.SetHDevOperators(null);

}

23.2 Examples 157

The instance of the implementation class is initialized with the HALCON window of the form.

private HDevOpMultiWindowImpl MyHDevOperatorImpl;

private void WindowControl_Load(object sender, EventArgs e)

{

Window = WindowControl.HalconWindow;

...

MyHDevOperatorImpl = new HDevOpMultiWindowImpl(Window);

}

If the class HDevOpMultiWindowImpl is initialized without specifying the window, a new HALCON window will
open automatically to emulate the behavior of HDevelop. Consequently, using the operator dev_open_window
in your HDevelop program or procedure will open another window. The newly opened window is set active
automatically.

23.2.5 Display

In contrast to the C++ version of HDevEngine, HDevEngine/.NET already provides convenience implementations
of HDevelop’s internal display operators in form of two classes:

• HDevOpFixedWindowImpl directs all display operators to a single graphics window (passed in the construc-
tor), even if the HDevelop program or procedure uses multiple windows.

• HDevOpMultiWindowImpl can handle multiple graphics windows. You can pass an arbitrary number of
graphics windows in the constructor; if the HDevelop program or procedure uses more than them, HDevEn-
gine opens additional free-floating windows.

In the example code, some of the actual program and procedure execution is delegated to a background thread. This
is good practice because long-running execution would otherwise lead to an unresponsive GUI. Further, HDevelop
code using interactive drawing objects would not work with HSmartWindowControl if the GUI thread is blocked.

While HALCON display operators are thread-safe, access to Windows Forms elements is not (for example, to en-
able buttons or set label texts). Therefore, result visualization is delegated back to the GUI thread using Invoke()

calls in these examples.

Finally, using dev_* operators for visualization via HDevOpFixedWindowImpl or HDevOpMultiWindowImpl is
limited for multithreaded applications (executing multiple procedures in parallel). This is because there is only one
global “active” window at any given time as controlled by dev_set_window, hence threads cannot control their
output windows independently. This behavior is consistent with the behavior in HDevelop (which also has only
one active window) when using multiple threads via par_start.

If parallel visualization is desired, we recommend writing explicit visualization code using HALCON operators
that output directly to the desired window. For more information, see section 23.2.7 on page 159.

The example program ExecProgram uses HDevOpMultiWindowImpl. To use this class (or
HDevOpFixedWindowImpl), you pass an instance of it to HDevEngine with the method :

private void WindowControl_Load(object sender, EventArgs e)

{

Window = WindowControl.HalconWindow;

MyEngine.SetHDevOperators(new HDevOpMultiWindowImpl(Window));

}

If your application has special display requirements that are not satisfied by the two classes, you can provide
your own implementation of the display operators similar to the C++ version of HDevelop (see section 22.2.3
on page 143) by creating a class implementing the interface IHDevOperators and overloading its methods
DevOpenWindow, DevDisplay, etc.

H
D

ev
E

ng
in

e

158 HDevEngine in .NET Applications

23.2.6 Error Handling

In this section, we take a closer look at exceptions in HDevEngine. The code fragments in the following stem
from the example application ErrorHandling, which provokes and catches different types of exceptions when
you press some buttons. Figure 23.4 on page 158 shows a screenshot of the application.

Figure 23.4: Provoking exceptions in HDevEngine.

HDevEngine throws exceptions as instances of the class HDevEngineException, which contains the type (cate-
gory) of the exception, a message describing the exception, and, depending on the exception type, information like
the name of the executed procedure or the HALCON error code (also see section 25.1.7 on page 196).

In the example application, the following procedure displays all the information contained in
HDevEngineException in a message box:

private void DisplayException(HDevEngineException Ex)

{

string FullMessage = "Message: <" + Ex.Message + ">" +

", Error in program / procedure: <" + Ex.ProcedureName + ">" +

", program line: <" + Ex.LineText + ">" +

", line number: <" + Ex.LineNumber + ">" +

", HALCON Error Number: <" + Ex.HalconError + ">";

string Title = "HDevEngine Exception (Category: " +

Ex.Category.ToString() + ")";

MessageBox.Show(FullMessage, Title);

}

This procedure is called when an exception occurs; note that the example applications described in the previous
sections only display the exception message.

try

{

HDevProgram Program = new HDevProgram(ProgramPathString);

new HDevProgramCall(Program);

}

catch (HDevEngineException Ex)

{

DisplayException(Ex);

return;

}

Figure 23.5 on page 159 displays an exception that occurred because the application tried to load a non-existing
HDevelop program (category ExceptionFile). As you can see, only the message contains useful information in
this case.

The next exception occurs when executing a procedure in which an input parameter is not initialized (category
ExceptionInpNotInit):

procedure detect_fin_with_error_inpnotinit (Image: FinRegion: : FinArea)

bin_threshold (NotExistingImage, Dark)

...

Figure 23.6 on page 159 displays the content of the exception, which now contains very detailed information about
where the error occurred and why.

23.2 Examples 159

Figure 23.5: Content of the exception if an HDevelop program could not be loaded.

Figure 23.6: Content of the exception if an input parameter was not initialized.

The final exception is provoked by executing a procedure in which the call to the operator closing_circle fails
because the third parameter is not valid (category ExceptionCall).

procedure detect_fin_with_error_call (Image: FinRegion: : FinArea)

bin_threshold (Image, Dark)

difference (Image, Dark, Background)

dev_set_color ('blue')
dev_display (Background)

closing_circle (Background, ClosedBackground, -1)

...

Figure 23.7 on page 160 shows the content of the exception.

With the method UserData (see section 25.1.7 on page 196), you can also access user exception data
that is thrown within an HDevelop program or procedure by the operator throw similarly to the operator
dev_get_exception_data.

In case of an exception (which is not caught within the procedure) the procedure call is cleaned up. This means all
subthreads are destroyed and all values of input and output parameters are cleared. Therefore, we recommend that
you always set all input parameters before executing a call even if some of them did not change.

Note that you can configure the behavior of HDevEngine when loading programs or procedures that contain invalid
lines or unresolved procedure calls with the method SetEngineAttribute (see section 25.1.1 on page 184).

23.2.7 Creating Multithreaded Applications

HALCON provides two C# example applications that use multithreading with HDevEngine/.NET:

H
D

ev
E

ng
in

e

160 HDevEngine in .NET Applications

Figure 23.7: Content of the exception if an error occurred in a HALCON operator call.

• In MultiThreading, the application is sped up by executing the same HDevelop procedure in parallel
using two threads.
This example is described in detail in section 23.2.7.1 on page 160.

• In contrast, MultiThreadingTwoWindows executes different procedures in parallel.
This example is very similar to the previous one. Therefore, in section 23.2.7.2 on page 166 only the differ-
ences are described.

In the following, we briefly list the most important rules to observe when creating multithreaded HDevEngine ap-
plications. Also have a look at the general information about parallel programming using HALCON in section 2.2
on page 16, in particular the style guide in section 2.2.2 on page 17.

• When multiple threads execute HDevelop programs in parallel, each thread must create its own instance
of the corresponding HDevProgramCall.

• External procedure path and the implementation of HDevelop’s display operators are always set glob-
ally for all instances of HDevEngine. We recommend setting them via a separate HDevEngine instance to
keep the code more readable.

23.2.7.1 Executing a Procedure in Parallel by Multiple Threads

The example application MultiThreading presented in this section exploits multi-core or multi-processor systems
by executing the same HDevelop procedure (task) in parallel by two threads. The procedure finds bottle caps using
shape-based matching.

Figure 23.8 on page 161 shows an overview of the structure of the application. It consists of four threads: The
main thread (i.e., the form) is in charge of the graphical user interface (GUI), which is depicted in figure 23.9 on
page 161. It consists of a HALCON window for the display of results and buttons to initialize, start, and stop the
application.

The main thread also initializes the application by training the shape model via an HDevelop procedure and by
creating and initializing the other three threads: two processing threads and the so-called control thread, which
controls the two processing threads.

The control thread acquires the images and passes them to the processing threads, which then process the images
and pass back the results. The control thread collects the results, but does not display them itself, because all
activities in the HALCON window must be performed by the thread that created it, i.e., the main thread.

Now, we take a closer look at the corresponding code. Please note that we do not show all details; in particular,
error handling, and termination including memory management are left out.

Initialization

The application is initialized in the event handler of the Init button (file: MultiThreadingForm.cs).

private void InitButton_Click(object sender, System.EventArgs e)

23.2 Examples 161

initialize application

display results

pass results

process image

pass image to processing thread

collect results

delegate result display

(EngineThread)
GUI (buttons, HALCON window)

acquire images

(MultiThreadingForm)

Main Thread

Control Thread

(ControlThread)

Processing Thread

Figure 23.8: Tasks of the threads.

Figure 23.9: Screenshot of the application.

Step 1: Switch off automatic operator parallelization

HOperatorSet.SetSystem("parallelize_operators", "false");

First, the automatic operator parallelization is switched off, otherwise the two mechanisms (multithreading and
operator parallelization) would use more than the available number of cores / processors and thus slow down
the application instead of speeding it up (see the style guide in section 2.2.2 on page 17). If you have a system
with more than two cores or processors, you can consider to allocate some of them to the automatic operator
parallelization as described in section 2.5.1 on page 19.

Step 2: Set external procedure path

Then, we create an instance of HDevEngine and set the path for searching the HDevelop procedures (code for
constructing the path omitted). If the external procedure is from a procedure library, the external procedure path
may include the name of the library file.

HDevEngine MyEngine = new HDevEngine();

string ProcedurePath = "/hdevengine/procedures";

...

MyEngine.SetProcedurePath(Path.GetFullPath(ExampleDir + ProcedurePath));

H
D

ev
E

ng
in

e

162 HDevEngine in .NET Applications

Step 3: Train the shape model

To initialize the image processing part, we execute an HDevelop procedure that trains the shape model of the caps.

HDevProcedureCall ProcTrain;

HDevProcedure Procedure = new HDevProcedure("train_shape_model");

ProcTrain = new HDevProcedureCall(Procedure);

ProcTrain.Execute();

Step 4: Store the model data

The procedure returns the handle of the shape model and the model contours. We store both in variables of the
form so that the processing threads can access them.

public HTuple ModelID;

public HXLD ModelContours;

ModelID = ProcTrain.GetOutputCtrlParamTuple("ModelID");

ModelContours = ProcTrain.GetOutputIconicParamXld("ModelContours");

Step 5: Create and initialize the processing engines

The actual image processing is encapsulated in the class EngineThread (file: EngineThread.cs). The main
members of this class are a thread and instances of HDevEngine and HDevProcedureCall. Besides, an
EngineThread contains variables for accessing the shape model data trained in the main thread and an event
that signals that the “engine” is ready for the next image.

public class EngineThread

{

Thread WorkerObject = null;

HDevProcedureCall ProcCall;

HTuple ModelID;

HXLD ModelContours;

public AutoResetEvent EngineIsReady;

public EngineThread(MultiThreadingForm mainForm)

{

ModelID = mainForm.ModelID;

ModelContours = mainForm.ModelContours;

EngineIsReady = new AutoResetEvent(true);

}

The main thread creates and initializes two instances of this class and also stores their events (file:
MultiThreadingForm.cs).

EngineThread WorkerEngine1; // Processing thread.

EngineThread WorkerEngine2; // Processing thread.

AutoResetEvent Engine1Ready;

AutoResetEvent Engine2Ready;

WorkerEngine1 = new EngineThread(this);

WorkerEngine1.Init();

Engine1Ready = WorkerEngine1.EngineIsReady;

WorkerEngine2 = new EngineThread(this);

WorkerEngine2.Init();

Engine2Ready = WorkerEngine2.EngineIsReady;

An EngineThread initializes itself by creating the procedure call for detecting the caps in the images. Because
the input parameters of the procedure that concern the shape model are the same for each call, they can be set once
in advance (file: EngineThread.cs).

23.2 Examples 163

public void Init()

{

HDevProcedure Procedure = new HDevProcedure("detect_shape");

ProcCall = new HDevProcedureCall(Procedure);

ProcCall.SetInputCtrlParamTuple("ModelID", ModelID);

ProcCall.SetInputIconicParamObject("ModelContours", ModelContours);

}

Step 6: Initialize image acquisition

Finally, we initialize the image acquisition. The handle is stored in a variable of the form, so that the control thread
can access it (file: MultiThreadingForm.cs).

private HFramegrabber AcqHandle;

string ImagePath = Path.GetFullPath(ExampleDir + "/images/cap_illumination");

AcqHandle = new HFramegrabber("File", 1, 1, 0, 0, 0, 0, "default", -1,

"default", -1, "default", ImagePath, "default", -1, -1);

Image Processing

When you click the Run button, the application starts to process images in a loop.

Step 1: Starting the processing threads and the control thread

First, the main thread starts the processing engines (file: MultiThreadingForm.cs).

private void RunButton_Click(object sender, System.EventArgs e)

{

WorkerEngine1.Run();

WorkerEngine2.Run();

The corresponding method creates and starts their thread and sets the “ready” signal (file: EngineThread.cs).

public void Run()

{

EngineIsReady.Set();

WorkerObject = new Thread(new ThreadStart(Process));

WorkerObject.Start();

}

Then, the main thread starts the control thread (file: MultiThreadingForm.cs):

ControlThread = new Thread(new ThreadStart(Run));

ControlThread.Start();

Step 2: Triggering the processing threads from the control thread

The control thread’s action is contained in the method Run (file: MultiThreadingForm.cs). As long as the Stop
is not pressed (please take a look at the project’s code for more information), it waits until one of the processing
engine is ready.

H
D

ev
E

ng
in

e

164 HDevEngine in .NET Applications

EngineThread WorkerEngine; // Variable to switch between processing threads.

public void Run()

{

HImage Image;

while (!StopEventHandle.WaitOne(0, true))

{

if (Engine1Ready.WaitOne(0, true))

WorkerEngine = WorkerEngine1;

else if (Engine2Ready.WaitOne(0, true))

WorkerEngine = WorkerEngine2;

else

continue;

Image = AcqHandle.GrabImageAsync(-1);

WorkerEngine.SetImage(Image);

Then, it acquires the next image and passes it to the engine, which stores it in a member variable (file:
EngineThread.cs).

private HImage InputImage = null;

public void SetImage(HImage Img)

{

InputImage = Img;

}

Step 3: Processing the image

In their action method (Process), the processing threads wait for the image to be set (file: EngineThread.cs).
The actual image processing is performed by the HDevelop procedure, passing the image as input parameter.

public void Process()

{

while (!DelegatedStopEvent.WaitOne(0, true))

{

if (InputImage == null)

continue;

ProcCall.SetInputIconicParamObject("Image", InputImage);

ProcCall.Execute();

Step 4: Passing the results to the control thread

To pass the results, a class is defined that stores the relevant data: the processed image and the position, orientation,
and the contours of the found cap.

public class ResultContainer

{

public HImage InputImage;

public HXLD FoundContours;

public double Row;

public double Column;

public double Angle;

}

After executing the procedure, the processing thread accesses its results and stores them in a new instance of the
result class (“result container”), together with the processed image.

23.2 Examples 165

ResultContainer Result;

HTuple ResultTuple;

Result = new ResultContainer();

Result.InputImage = InputImage;

Result.FoundContours = ProcCall.GetOutputIconicParamXld("ResultObject");

ResultTuple = ProcCall.GetOutputCtrlParamTuple("ResultData");

Result.Row = ResultTuple[0];

Result.Column = ResultTuple[1];

Result.Angle = ResultTuple[2];

The processing thread then passes the result container to the control thread by appending it to a list.

ResultMutex.WaitOne();

ResultList.Add(Result);

ResultMutex.ReleaseMutex();

This list is a member variable of the main thread (file: MultiThreadingForm.cs). It is protected by a mutex so
that the threads can access it safely.

public ArrayList ResultList;

public Mutex ResultDataMutex;

public MultiThreadingForm()

{

ResultDataMutex = new Mutex();

ResultList = new ArrayList();

}

The processing threads store references to the list and to the mutex in own member variables (file:
EngineThread.cs).

ArrayList ResultList;

Mutex ResultMutex;

public EngineThread(MultiThreadingForm mainForm)

{

ResultList = mainForm.ResultList;

ResultMutex = mainForm.ResultDataMutex;

}

Step 5: “Ready again”

Finally, the processing thread signals that it is ready for the next image by setting the corresponding event and by
setting the input image to null.

InputImage = null;

this.EngineIsReady.Set();

Result Display

Step 1: Checking whether new results are available

Let’s return to the action method (Run) of the control thread (file: MultiThreadingForm.cs). After triggering a
processing thread by passing the image to process, it checks whether the result list contains new items.

int Count = -1;

ResultDataMutex.WaitOne();

Count = ResultList.Count;

ResultDataMutex.ReleaseMutex();

H
D

ev
E

ng
in

e

166 HDevEngine in .NET Applications

Step 2: Delegating the display

The control thread does not perform the display of results itself but delegates it to the main thread (running the
form) with the method Invoke.

for (; Count > 0; Count--)

Invoke(DelegatedDisplay);

The necessary members are defined by the form.

delegate void FuncDelegate();

FuncDelegate DelegatedDisplay;

public MultiThreadingForm()

{

DelegatedDisplay = new FuncDelegate(DisplayResults);

}

Note that all HALCON visualization operators are automatically delegated to the correct thread as described in
chapter section 2.3 on page 18.

Step 3: Displaying the results

The actual display is performed by the method DisplayResults. Each time it is called, it removes an item from
the result list and displays the processed image with the contours of the found cap. Then, it frees the corresponding
HALCON-internal memory.

public void DisplayResults()

{

ResultDataMutex.WaitOne();

Result = (ResultContainer)ResultList[0];

ResultList.Remove(Result);

ResultDataMutex.ReleaseMutex();

Window.ClearWindow();

Window.DispImage(Result.InputImage);

Window.DispObj(Result.FoundContours);

Result.InputImage.Dispose();

Result.FoundContours.Dispose();

}

23.2.7.2 Executing Multiple Procedures in Parallel by Multiple Threads

In contrast to the previous section, the example application MultiThreadingTwoWindows presented here executes
different HDevelop procedures (tasks) in parallel by two threads. One task is to find bottle caps using shape-based
matching, the other to read ECC 200 data codes.

Figure 23.10 on page 167 shows an overview of the structure of the application. Like the application described in
the previous section, it consists of four threads: The main thread (i.e., the form) is in charge of the graphical user
interface (GUI), which is depicted in figure 23.9 on page 161. It consists of a HALCON window for the display of
results and buttons to initialize, start, and stop the application.

The main thread also initializes the application by creating and initializing the other three threads: two processing
threads and the so-called control thread, which controls the two processing threads. In contrast to the previous
application, here the processing threads initialize the image processing tasks by training the shape model and the
data code model, respectively, via HDevelop procedures.

The control thread acquires the images and passes them to the processing threads, which then process the image and
pass back the results. The control thread collects the results, but does not display them itself, because all activities
in the HALCON window must be performed by the thread that created it, i.e., the main thread. In contrast to the
previous application the results of the two tasks are displayed in two separate windows.

Below, we take a closer look at the corresponding code, restricting ourselves, however, to the parts that are different
to the previous application.

23.2 Examples 167

initialize application

display results

pass results

process image

pass image to processing thread

collect results

delegate result display

GUI (buttons, HALCON window)

acquire images

(EngineThread)

initialize task

(MultiThreadingTwoWindowsForm)

Control Thread

(ControlThread)

Main Thread
Processing Thread

Figure 23.10: Tasks of the threads.

Figure 23.11: Screenshot of the application.

Initialization

As in the previous example, the application is initialized in the event handler of the Init button (file:
MultiThreadingTwoWindowsForm.cs).

Step 1: Create and initialize the processing engines

The processing engines are created and initialized similarly to the previous example, with some exceptions: First,
the shape and the data code model are now trained by the processing threads instead of the control thread (see the
step below). Secondly, the processing engines now also have a variable that indicates “their” HALCON window
(file: EngineThread.cs).

H
D

ev
E

ng
in

e

168 HDevEngine in .NET Applications

public class EngineThread

{

...

public int WindowIndex = -1;

...

The control thread sets this variable after creating the engines (file: MultiThreadingTwoWindowsForm.cs).

private void InitButton_Click(object sender, System.EventArgs e)

{

...

WorkerEngine1.WindowIndex = 1;

...

WorkerEngine2.WindowIndex = 2;

Step 2: Train the shape and data code model

The training of the shape and data code model is now performed by the initialization method of the
processing threads, which now has a parameter that specifies the task of the processing thread (file:
MultiThreadingTwoWindowsForm.cs).

WorkerEngine1.Init("shape");

...

WorkerEngine2.Init("datacode");

The HDevelop procedures for training the models and for performing the image processing have similar names for
the two tasks, so that their names can be generated automatically (file: EngineThread.cs). The task name itself
is stored in a variable of the class EngineThread.

public class EngineThread

{

HDevProcedureCall ProcCall;

string Task;

HTuple ModelID;

HXLD ModelContours;

...

public void Init(string Task)

{

string TrainMethod = "train_" + Task + "_model";

string ProcessingMethod = "detect_" + Task;

HDevProcedureCall ProcTrain;

this.Task = Task;

Then, the model of the shape or datacode, respectively, is trained by executing the corresponding HDevelop pro-
cedure and the returned model data is stored in variables of the class.

HDevProcedure Procedure = new HDevProcedure(TrainMethod);

ProcTrain = new HDevProcedureCall(Procedure);

ProcTrain.Execute();

ModelID = ProcTrain.GetOutputCtrlParamTuple("ModelID");

if (Task.Equals("shape"))

{

ModelContours = ProcTrain.GetOutputIconicParamXld("ModelContours");

}

Step 3: Store the model data

Finally, those input parameters of the image processing procedure that are the same for each call are set (file:
EngineThread.cs).

23.2 Examples 169

HDevProcedure Procedure = new HDevProcedure(ProcessingMethod);

ProcCall = new HDevProcedureCall(Procedure);

ProcCall.SetInputCtrlParamTuple("ModelID", ModelID);

if (Task.Equals("shape"))

{

ProcCall.SetInputIconicParamObject("ModelContours", ModelContours);

}

Step 4: Initialize image acquisition

The two image processing tasks are performed in different images, therefore, two image acquisition devices are
opened by the main thread (file: MultiThreadingTwoWindowsForm.cs, code not shown).

Image Processing

Step 1: Triggering the processing threads

The control thread’s action is contained in the method Run (file: MultiThreadingTwoWindowsForm.cs). As
long as the Stop is not pressed, it checks whether the processing engines are ready and, if this is the case, acquires
and passes images..

public void Run()

{

HImage Image;

while (!StopEventHandle.WaitOne(0, true))

{

if (Engine1Ready.WaitOne(0, true))

{

Image = AcqHandle1.GrabImageAsync(-1);

WorkerEngine1.SetImage(Image);

}

if (Engine2Ready.WaitOne(0, true))

{

Image = AcqHandle2.GrabImageAsync(-1);

WorkerEngine2.SetImage(Image);

}

Step 2: Passing the results to the control thread

The class storing the result data differs significantly from the one in the previous example: It now also contains
a variable that indicates the window in which to display the results and a flag that shows whether the processing
was successful. Because the processing results differ between the two tasks, they are encapsulated in a tuple (file:
EngineThread.cs).

public class ResultContainer

{

public int WindowIndex; // 1 -> shape, 2 -> datacode.

public HImage InputImage;

public HXLD FoundContours;

public HTuple ResultData;

public bool DetectionSuccessful;

}

After executing the procedure, the processing thread accesses its results and stores them in a new instance of the
result container, together with the processed image and the window index.

H
D

ev
E

ng
in

e

170 HDevEngine in .NET Applications

public void Process()

{

ResultContainer Result;

Result = new ResultContainer();

...

Result.InputImage = InputImage;

DetectionSuccessful = ProcCall.GetOutputCtrlParamTuple("DetectionSuccessful").S;

if (DetectionSuccessful.Equals("true"))

{

Result.DetectionSuccessful = true;

Result.FoundContours = ProcCall.GetOutputIconicParamXld("ResultObject");

Result.ResultData = ProcCall.GetOutputCtrlParamTuple("ResultData");

}

else

{

Result.DetectionSuccessful = false;

}

Result.WindowIndex = WindowIndex;

Result Display

As in the previous example, the display of results is performed by the main thread in the method ResultDisplay

(file: MultiThreadingTwoWindowsForm.cs). The main difference is that the display now is switched between
the two HALCON windows, based on the variable in the result container.

public void DisplayResults()

{

HWindow Window;

if (Result.WindowIndex == 1)

{

Window = Window1;

}

else

{

Window = Window2;

}

Furthermore, the display method now checks the success of the image processing to avoid accessing non-existing
result elements. For both tasks, the resulting contours, i.e., the found shape or data code region, respectively, are
displayed. For the data code task, also the read code is displayed.

23.3 Using the Just-in-time Compiler With HDevEngine/.NET 171

Window.ClearWindow();

Window.DispImage(Result.InputImage);

if (Result.DetectionSuccessful)

{

Window.DispObj(Result.FoundContours);

// Additional display for data code result: code.

if (Result.WindowIndex == 2)

{

Row = (int)Result.ResultData[0].D;

Col = (int)Result.ResultData[1].D;

Window.SetTposition(Row, Col);

Window.WriteString((string)Result.ResultData[2].S);

}

}

else

{

Window.SetColor("red");

Window.SetTposition(20, 20);

Window.WriteString("Detection failed!");

Window.SetColor("green");

}

23.2.8 Executing an HDevelop Program with Vector Variables

The example application UseVectorVariables shows how to load and execute an HDevelop example that con-
tains vector variables in HDevengine/C#. In the example two vectors are used for processing: one containing the
input images and one containing scaling factors. When executing the program the gray values of the input images
are scaled according to the scaling factors. Please have a look at the source file UseVectorVariablesForm.cs

for more details on how to work with vector variables in HDevengine/.NET.

23.3 Using the Just-in-time Compiler With HDevEngine/.NET

The just-in-time compilation of procedures needs to be enabled in your instance of the HDevEngine class:

...

Engine = new HDevEngine();

// Enable or disable execution of compiled procedures.

Engine.SetEngineAttribute("execute_procedures_jit_compiled", "true");

Procedures (and procedures referenced by it) are compiled at the moment a corresponding instance of
HDevProcedureCall or HDevProgramCall is created.

You can also explicitly pre-compile all used procedures of a HDevelop program or procedure using the method
CompileUsedProcedures of HDevProgram or HDevProcedure, respectively.

In the following example, all used procedures of a procedure call are just-in-time compiled:

Program = new HDevProgram(ProgramPathString);

// Get local procedure.

Proc = new HDevProcedure(Program, name);

...

Proc.CompileUsedProcedures();

H
D

ev
E

ng
in

e

172 HDevEngine in .NET Applications

HDevEngine In Python Applications 173

Chapter 24

HDevEngine In Python Applications

This chapter explains how to use HDevEngine in Python applications. Section 24.1 on page 173 quickly sum-
marizes some basic information about creating HDevEngine applications with Python. Section 24.3 on page 174
provides a more comprehensive overview.

24.1 Introduction

The HDevEngine/Python interface is similar to the HDevEngine/.NET and HDevEngine/C++ interface. Most
concepts and functions have a one-to-one mapping.

A short reference of the C++ classes for the HDevEngine can be found in section 25.1 on page 183. The Python
classes are similar.

This chapter only describes HDevEngine/Python specifics. If a topic e.g., error handling is not mentioned, the
relevant part in Part IV on page 89 applies.

24.1.1 A First Example

This section explains how to create a simple HDevEngine/Python applicaton. For a more comprehensive descrip-
tion, read section 24.3 on page 174.

1. Install HALCON 23.05.

2. Install Python 3.8 or newer on your system.

3. Set up your Python environment of choice, e.g., using python -m venv

path_to_new_virtual_environment

4. Run the following commands in a shell:

mkdir hdevengine_example

cd hdevengine_example

pip install mvtec-halcon==23050

5. Create a file named hdevengine_example.py and change the content to:

H
D

ev
E

ng
in

e

174 HDevEngine In Python Applications

import os

import halcon as ha

if __name__ == '__main__':
example_dir = ha.get_system_s('example_dir')
procedure_path = os.path.join(example_dir, 'hdevengine', 'procedures')

hdev_engine = ha.HDevEngine()

hdev_engine.set_procedure_path(procedure_path)

img = ha.read_image('fin2')

procedure = ha.HDevProcedure.load_external('detect_fin')
proc_call = ha.HDevProcedureCall(procedure)

proc_call.set_input_iconic_param_by_name('Image', img)

proc_call.execute()

fin_area = proc_call.get_output_control_param_by_name('FinArea')[0]
print(f'Fin Area: {fin_area}')

6. To run the application, type the following command in the same shell:

python hdevengine_example.py

As as result, you should see the following output ’Fin Area: 1634’.

24.2 Creating Applications With HDevEngine/Python

24.2.1 Adding HDevEngine/Python to a Python Application

No HDevEngine-specific actions are required. For more information, see section 14.2 on page 91.

24.3 HDevEngine/Python Interface

24.3.1 Global Functionality

While you can have multiple Python instances of HDevEngine/Python, they all share the same implementation as
a mutable singleton.

This mostly affects configuration. Specific program and procedure call instances are more or less independent
from each other.

Here HALCON is queried for the example directory path, based on which the path containing the ’detect_fin’
procedure is constructed. Then an HDevEngine instance is initialized and the procedure search path set to it.

example_dir = ha.get_system_s('example_dir')
procedure_path = os.path.join(example_dir, 'hdevengine', 'procedures')

hdev_engine = ha.HDevEngine()

hdev_engine.set_procedure_path(procedure_path)

24.3.1.1 Attributes

def set_attribute(self, name: str, value: HTupleType) -> None:

def get_attribute(self, name: str) -> HTupleType:

24.3 HDevEngine/Python Interface 175

These functions let you set specific attributes. For example, by default, the attribute ’ignore_invalid_results’
is set to true. This means that by default, an empty region object or an empty tuple is returned if a variable
or parameter is queried that was not previously set by the program or procedure. Think of it like this: Should
accessing an uninitialized variable return a default or should it raise an exception?

hdev_engine = ha.HDevEngine()

assert hdev_engine.get_attribute('ignore_invalid_results') == 1

hdev_engine.set_attribute('ignore_invalid_results', 0)

assert hdev_engine.get_attribute('ignore_invalid_results') == 0

For HDevEngine attributes, 0 maps to false, and 1 to true.

See section 25.1 on page 183 for a list of available attributes.

24.3.1.2 Debug Server

HDevEngine

def start_debug_server(self) -> None:

def stop_debug_server(self) -> None:

These functions let you start and stop the server required for debugging the engine execution. You can control the
port via the attribute ’debug_port’.

24.3.1.3 Procedure Search Paths

HDevEngine

def set_procedure_path(self, path: str) -> None:

def add_procedure_path(self, path: str) -> None:

These functions let you set and extend the list of paths searched when trying to load a procedure.

24.3.1.4 Global Metadata

HDevEngine

def get_procedure_names(self) -> List[str]:

def get_loaded_procedure_names(self) -> List[str]:

def get_global_control_var_names(self) -> List[str]:

def get_global_iconic_var_dimension(self, name: str) -> int:

def get_global_control_var_dimension(self, name: str) -> int:

These functions let you query global metadata, such as which procedures are loaded, the vector dimensions of
global variables, and more.

24.3.1.5 Reading and Writing Global Variables

HDevEngine

def set_global_iconic_var(self, name: str, value: HObject) -> None:

def set_global_iconic_vector_var(self, name: str, value: IconicVectorType) -> None:

def set_global_control_var(self, name: str, value: HTupleType) -> None:

def set_global_tuple_vector_var(self, name: str, value: TupleVectorType) -> None:

def get_global_iconic_var(self , name: str) -> HObject:

def get_global_iconic_vector_var(self, name: str) -> TupleVectorType:

def get_global_control_var(self, name: str) -> HTupleType:

def get_global_tuple_vector_var(self, name: str) -> TupleVectorType:

H
D

ev
E

ng
in

e

176 HDevEngine In Python Applications

These functions let you read and write global variables, both iconic and control.

24.3.2 Calling HDevelop Procedures

The general concept behind calling HDevelop procedures from Python is as follows:

1. Initialize an HDevProcedure instance by loading a procedure from the file system.

2. Create a specific HDevProcedureCall instance from the HDevProcedure instance.

3. Set iconic and control input parameters.

4. Call execute.

5. Read output parameters.

procedure = ha.HDevProcedure.load_external('detect_fin')
proc_call = ha.HDevProcedureCall(procedure)

proc_call.set_input_iconic_param_by_name('Image', img)

proc_call.execute()

fin_area = proc_call.get_output_control_param_by_name('FinArea')[0]
print(f'Fin Area: {fin_area}')

24.3.2.1 Loading Procedures

HDevProcedure

@staticmethod

def load_external(name: str) -> 'HDevProcedure':

@staticmethod

def load_local(

program: Union[HDevProgram, str],

name: str

) -> 'HDevProcedure':

Procedures are loaded via these static methods. Use only these functions to initialize HDevProcedure instances.

hdev_engine.set_procedure_path(proc_dir)

external_proc = ha.HDevProcedure.load_external('detect_fin')

program = ha.HDevProgram(os.path.join(proc_dir, 'program.hdev'))
local_proc_program = ha.HDevProcedure.load_local(program, 'count_nuts')
local_proc_name = ha.HDevProcedure.load_local('program.hdev', 'count_nuts')

While Python allows calling static methods on instances, e.g.: ha.HDevProcedure().load_external this is
not recommended as it needlessly wastes resources.

24.3.2.2 Unloading Procedures

HDevEngine

def unload_procedure(self, name: str) -> None:

def unload_all_procedures(self) -> None:

These functions let you unload procedures again, once they are loaded. For example, this can be useful to free up
unused memory.

24.3 HDevEngine/Python Interface 177

24.3.2.3 Procedure Metadata

Access procedure metadata via these read-only member variables:

HDevProcedure

- name : str

- short_description : str

- loaded : bool

- input_iconic_param_names : List[str]

- output_iconic_param_names : List[str]

- input_control_param_names : List[str]

- output_control_param_names : List[str]

- input_iconic_param_dimensions : List[int]

- output_iconic_param_dimensions : List[int]

- input_control_param_dimensions : List[int]

- output_control_param_dimensions : List[int]

HDevProcedure

def get_used_procedure_names(self) -> List[str]:

def get_info(self, slot: str) -> HTupleType:

def get_param_info(self, name: str, slot: str) -> HTupleType:

def get_input_iconic_param_info(self, idx: int, slot: str) -> HTupleType:

def get_output_iconic_param_info(self, idx: int, slot: str) -> HTupleType:

def get_input_control_param_info(self, idx: int, slot: str) -> HTupleType:

def get_output_control_param_info(self, idx: int, slot: str) -> HTupleType:

def query_slots(self) -> List[str]:

def query_param_slots(self) -> List[str]:

Use these functions to query procedure metadata.

24.3.2.4 JIT Compiling

HDevProcedure

def compile_used_procedures(self) -> bool:

Compile all procedures that are used by the program and that can be compiled with a just-in-time compiler. Pro-
cedures that could not be compiled are called by the HDevEngine interpreter in the usual way. To check which
procedure could not be compiled and what the reason is for that, start HDevelop and check the compilation states
there.

This functions returns whether all used procedures were JIT compiled.

24.3.2.5 Procedure Call Initialization

proc_call = ha.HDevProcedureCall(procedure)

The only way to initialize an HDevProcedureCall instance is using a loaded HDevProcedure instance.

H
D

ev
E

ng
in

e

178 HDevEngine In Python Applications

24.3.2.6 Setting Input Parameters

HDevProcedureCall

def set_input_control_param_by_index(self, idx: int, value: HTupleType) -> None:

def set_input_tuple_vector_by_index(self, idx: int, value: TupleVectorType) -> None:

def set_input_control_param_by_name(self, name: str, value: HTupleType) -> None:

def set_input_tuple_vector_by_name(self, name: str, value: TupleVectorType) -> None:

def set_input_iconic_param_by_index(self, idx: int, value: HObject) -> None:

def set_input_iconic_vector_by_index(self, idx: int, value: IconicVectorType) -> None:

def set_input_iconic_param_by_name(self, name: str, value: HObject) -> None:

def set_input_iconic_vector_by_name(self, name: str, value: IconicVectorType) -> None:

These functions let you set input parameters. We recommend always setting all input parameters again every time
you want to execute the procedure call. This helps make your code more robust in the face of error conditions.

Indices here start at 1 instead of 0.

24.3.2.7 Execution

HDevProcedureCall

def execute(self) -> None:

Use this function when you have set all input parameters to execute the procedure.

24.3.2.8 Reading Output Parameters

HDevProcedureCall

def get_output_control_param_by_index(self, idx: int) -> HTupleType:

def get_output_tuple_vector_by_index(self, idx: int) -> TupleVectorType:

def get_output_control_param_by_name(self, name: str) -> HTupleType:

def get_output_tuple_vector_by_name(self, name: str) -> TupleVectorType:

def get_output_iconic_param_by_index(self, idx: int) -> HObject:

def get_output_iconic_vector_by_index(self, idx: int) -> IconicVectorType:

def get_output_iconic_param_by_name(self, name: str) -> HObject:

def get_output_iconic_vector_by_name(self, name: str) -> IconicVectorType:

Use these functions to read output parameters after the call to execute has finished successfully.

Indices here start at 1 instead of 0.

24.3.2.9 Waiting for the Debugger

HDevProcedureCall

def wait_for_debug_connection(self) -> None:

Use this function in conjunction with start_debug_server to debug procedure execution.

24.3.2.10 Reseting

HDevProcedureCall

def reset(self) -> None:

This is mainly for situations when you want to abort execution from another thread or possibly free native resources
even while some instances are still alive.

24.3 HDevEngine/Python Interface 179

24.3.3 Calling HDevelop Programs

The general concept behind calling HDevelop programs from Python is as follows:

1. Initialize an HDevProgram instance by loading a program from the file system.

2. Create a specific HDevProgramCall instance from the HDevProgram instance.

3. Call execute.

4. Read variables.

example_dir = ha.get_system_s('example_dir')
program_path = os.path.join(

example_dir,

'hdevelop',
'Transformations',
'Poses'

)

program = ha.HDevProgram(os.path.join(program_path, 'pose_compose.hdev'))
program_call = ha.HDevProgramCall(program)

program_call.execute()

pose = program_call.get_control_var_by_name('PoseComposeAlternative')
rounded_pose = [round(x, 8) for x in pose]

assert rounded_pose == [0.3, -0.0498838, 0.33986422, 77.0, 90.0, 0.0, 0]

24.3.3.1 Loading Programs

program = ha.HDevProgram(os.path.join(program_path, 'pose_compose.hdev'))

Programs are loaded via the initializer of HDevProgram, which expects a full path to an HDevelop program in the
format of the operating system, including file name.

24.3.3.2 Program Metadata

Access program metadata via these read-only member variables:

HDevProgram

- name : str

- loaded : bool

- inconic_var_names : List[str]

- control_var_names : List[str]

- inconic_var_dimensions : List[int]

- control_var_dimensions : List[int]

HDevProgram

def get_used_procedure_names(self) -> List[str]:

def get_local_procedure_names(self) -> List[str]:

Use these functions to query program metadata.

H
D

ev
E

ng
in

e

180 HDevEngine In Python Applications

24.3.3.3 JIT Compiling

HDevProgram

def compile_used_procedures(self) -> bool:

Compile all procedures that are used by the program and that can be compiled with a just-in-time compiler. Pro-
cedures that could not be compiled are called by the HDevEngine interpreter in the usual way. To check which
procedure could not be compiled and what the reason is for that, start HDevelop and check the compilation states
there.

Returns whether all used procedures were JIT compiled.

24.3.3.4 Program Call Initialization

program_call = ha.HDevProgramCall(program)

The only way to initialize an HDevProgramCall instance is using a valid HDevProgram instance.

24.3.3.5 Execution

HDevProgramCall

def execute(self) -> None:

Use this function to execute the program.

24.3.3.6 Reading Variables

HDevProgramCall

def get_control_var_by_index(self, idx: int) -> HTupleType:

def get_tuple_vector_var_by_index(self, idx: int) -> TupleVectorType:

def get_control_var_by_name(self, name: str) -> HTupleType:

def get_tuple_vector_var_by_name(self, name: str) -> TupleVectorType:

def get_iconic_var_by_index(self, idx: int) -> HObject:

def get_iconic_vector_var_by_index(self, idx: int) -> IconicVectorType:

def get_iconic_var_by_name(self, name: str) -> HObject:

def get_iconic_vector_var_by_name(self, name: str) -> IconicVectorType:

Use these functions to read variables after the call to execute has finished successfully.

Indices here start at 1 instead of 0.

24.3.3.7 Waiting for the Debugger

HDevProgramCall

def wait_for_debug_connection(self) -> None:

Use this function in conjunction with start_debug_server to debug program execution.

24.3 HDevEngine/Python Interface 181

24.3.3.8 Reseting

HDevProgramCall

def reset(self) -> None:

This is mainly for situations when you want to abort execution from another thread or possibly free native resources
even while some instances are still alive.

24.3.4 Dev Operators

Inside HDevelop, dev_* operators can be used for convenience. When embedding an HDevelop program or proce-
dure inside your application, the potential dev_* operator calls have no straightforward mapping. It might be desir-
able to for example map dev_* operator calls to visualization within your application. Thus, HDevEngine/Python
provides a base class, which you can inherit from and overwrite with logic appropriate for your application.

Take for example this simple HDevelop program, which reads an image and then displays this PCB image in a dev
window.

read_image(Image, 'pcb')
dev_display(Image)

By default, this program will not open a window when using HDevEngine/Python. However, you can specify your
own logic of what should happen when dev_display is called.

For example, this Python code registers a very basic implementation of dev_display.

class DevImpl(ha.HDevOperatorBase):

@staticmethod

def dev_display(object):

print(object)

hdev_engine = ha.HDevEngine()

hdev_engine.set_hdev_operator_impl(DevImpl())

To get an overview which dev_* operators are available and which signatures each of them expects, take a look at
the implementation of HDevOperatorBase.

Note that only one implementation can be registered at a time. This applies to all current and future HDevEngine
instances, until changed.

By default no implementation is registered. Once you have registered an implementation you can return to the
default behavior by calling:

hdev_engine.unset_hdev_operator_impl()

Note that calling register_dev_operators might have surprising lifetime effects on your Python variables. See
the documentation of said function for more details.

Every function that was not overwritten by your implementation of HDevOperatorBase will raise an exception if
called.

It is safe to raise exceptions from within Python code implementing dev_* operators. However, only a generic
HDevEngineError will be raised and the original exception traceback will be logged to stderr. This is due to
technical limitations.

24.3.5 HALCON Vectors

HDevEngine/Python maps HALCON vectors to nested Python lists. There are two separate, incompatible types
of vectors: tuple_vector and iconic_vector. The following examples demonstrate the Python representation
that is used to read and write HALCON vectors in HDevEngine/Python:

H
D

ev
E

ng
in

e

182 HDevEngine In Python Applications

empty_tuple_vector = ha.HDevEmptyVector(dimension=1)

1d_tuple_vector = [[23, 'a'], ['ec', 2.5, 77]]

2d_tuple_vector = [[[8], ['b', 'c']], [], [[]]]

empty_iconic_vector = ha.HDevEmptyVector(dimension=1)

1d_iconic_vector = [img1, img2, img3]

2d_iconic_vector = [[img1, img2], [img1, img3, img4], []]

For tuple_vector, the inner most list is treated as HALCON tuple.

All elements of a vector must have the same dimension:

[[234], [2, 5]] # ok

[234, [2, 5]] # not ok

24.3.6 Multithreading

Because HDevEngine is a mutable singleton, some functionality affects your entire application:

1. Global functionality: See section 24.3.1 on page 174.

2. Loading programs and procedures.

3. Registering dev_* operator implementations.

A multi-threaded application must take care when working with this sort of shared mutable state. For example,
you cannot safely load multiple procedures in parallel using the global procedure path if they require different path
settings, without synchronizing appropriately inside your application. Not applying the required care will lead to
undefined behavior, including crashes and worse.

To avoid the aforementioned issues, we recommend configuring HDevEngine, as well as loading procedures and
programs, at the beginning of your program before starting additional application threads.

In contrast to HDevEngine, HDevProcedure, and HDevProgram, the call instances HDevProcedureCall and
HDevProgramCall are independent from each other.

General Information 183

Chapter 25

General Information

This chapter contains an overview about the main classes of HDevEngine and their methods (section 25.1 on
page 183) and miscellaneous application tips (section 25.3 on page 199). Remote debugging of HDevEngine
applications from HDevelop is described in section 25.2 on page 197.

25.1 Overview of the Classes

Note in the following, we print only the declaration of the classes for HDevEngine/C++. In the other variants of
HDevEngine, the methods and properties have the same names.

H
D

ev
E

ng
in

e

184 General Information

25.1.1 HDevEngine

.NET: HDevEngine

** class HDevEngine

**===

** Class for managing global engine settings:

** + external procedure path

** + implementation of dev_ operators (HDevOperatorImpl)

** + Attention: all changes made to one HDevEngine instance are global

** for all .dev programs or .dvp procedure that are executed in one

** application

***/

class LIntExport HDevEngine

{

public:

HDevEngine();

// Via engine attributes the behavior of the engine can be configured

// currently the following flags are supported:

// "ignore_unresolved_lines" [default: false, 0]

// - if set to true (or "true"), program lines that refer to an

// unresolved procedure are ignored, i.e., the program or procedure is

// executed without the corrupted program line;

// this may lead to an unexpected behavior or an error during the

// program execution

// - as the default an exception is thrown while creating the program or

// procedure instance

// "ignore_invalid_lines" [default: false, 0]

// - if set to true (or "true"), invalid program lines are ignored,

// i.e., the program or procedure is executed without the corrupted

// program line;

// this may lead to an unexpected behavior or an error during the

// program execution

// - as the default an exception is thrown while creating the program or

// procedure instance

// "ignore_invalid_results" [default: true, 1]

// - if set to false (or "false") throw an exception if the accessed

// procedure output parameter or program variable is invalid

// - the following methods are concerned:

// HenProgramCall::GetIconicVarObject()

// HenProgramCall::GetCtrlVarTuple()

// HenProcedureCall::GetOutputIconicParamObject()

// HenProcedureCall::GetOutputCtrlParamTuple()

// - as the default an empty region object or an empty tuple is returned

// if the object was not set within the program or procedure

(continued on next page)

25.1 Overview of the Classes 185

(continued declaration of HDevEngine)

// "docu_language" [default: "" -> en_US]

// - could be set to "en_US","de_DE", other languages

// "docu_encoding" [default: "" -> "utf8"]

// - if set to "native" all natural language strings are converted

// to native encoding

// "execute_procedures_jit_compiled" [default: false, 0]

// - if set to true (or "true"), procedures are tried to being compiled

// with a just-in-time compiler for faster execution

// "debug_port" [default: 57786]

// - specifies the port number of the socket where the debug server

// waits for incoming connections

// "debug_password" [default: ""]

// - specifying a password provides a basic layer of protection

// against misuse. For security reasons, it is highly recommended

// to always supply a password. If a password is set, it must be

// entered in HDevelop to allow the connection

// "debug_wait_for_connection" [default: false]

// - if set to true, the engine switches into "stopped state"

// after starting the debug server (see below). This has the effect

// that any application thread that enters procedure execution

// via HDevEngine will stop on the first line of script code.

// This way, you can start debugging from the beginning of your code

// upon connecting from HDevelop

void SetEngineAttribute(const char* name, const HalconCpp::HTuple& value);

HalconCpp::HTuple GetEngineAttribute(const char* name);

// Set path(s) for external procedures

// - several paths can be passed together separating them by ';' or ':'
// on Windows or UNIX-like systems resp.

// - NULL removes all procedure paths and unloads all external procedures

// (Attention: procedures that are used by programs (HDevProgram) or

// procedures (HDevProcedures) remain unchanged until the program or

// procedure is reloaded explicitly. The appropriate calls must be

// recreated or reassigned by the reloaded program or procedure.)

// - additional calls of SetProcedurePath will remove paths set before

// and unload all external procedures

void SetProcedurePath(const char* path);

void AddProcedurePath(const char* path);

#ifdef _WIN32

void SetProcedurePath(const wchar_t* path);

void AddProcedurePath(const wchar_t* path);

#endif

// Get names of all available external procedures

HalconCpp::HTuple GetProcedureNames() const;

// Get names of all loaded external procedures

HalconCpp::HTuple GetLoadedProcedureNames() const;

// Unload a specific procedure <proc_name>

void UnloadProcedure(const char* proc_name);

// Unload all external procedures

void UnloadAllProcedures();

// Starts the debug server that allows to attach HDevelop as

// as debugger to step through engine code. With default settings

// server waits on port 57786 and engine runs normally until HDevelop

// is connected and F9 is pressed to stop execution.

void StartDebugServer();

(continued on next page)

H
D

ev
E

ng
in

e

186 General Information

(continued declaration of HDevEngine)

// global variable access

HalconCpp::HTuple GetGlobalIconicVarNames() const;

HalconCpp::HTuple GetGlobalCtrlVarNames() const;

// get dimension of a global variable

int GetGlobalIconicVarDimension(const char* var_name) const;

int GetGlobalCtrlVarDimension(const char* var_name) const;

// get value of a global variable

HalconCpp::HObject GetGlobalIconicVarObject(const char* var_name);

HalconCpp::HTuple GetGlobalCtrlVarTuple(const char* var_name);

HalconCpp::HObjectVector GetGlobalIconicVarVector(const char* var_name);

HalconCpp::HTupleVector GetGlobalCtrlVarVector(const char* var_name);

// these method is provided for efficiency:

// the results are copied directly into the tuple variable provided by

// the user without additional copying

void GetGlobalCtrlVarTuple(const char* var_name, HalconCpp::HTuple* tuple);

// set global variable

void SetGlobalIconicVarObject(const char* var_name, const HalconCpp::HObject& obj);

void SetGlobalCtrlVarTuple(const char* var_name, const HalconCpp::HTuple& tuple);

void SetGlobalIconicVarVector(const char* var_name, const HalconCpp::HObjectVector& vector);

void SetGlobalCtrlVarVector(const char* var_name, const HalconCpp::HTupleVector& vector);

// Set implementation for HDevelop internal operators

void SetHDevOperatorImpl(HDevOperatorImplCpp* hdev_op_impl);

};

25.1 Overview of the Classes 187

25.1.2 HDevProgram

.NET: HDevProgram

** class HDevProgram

**===

** Class for managing HDevelop programs

class LIntExport HDevProgram

{

public:

// Create a program from a .dev program file

HDevProgram(const char* file_name = NULL);

#ifdef _WIN32

HDevProgram(const wchar_t* file_name);

#endif

// Copy constructor

HDevProgram(const HDevProgram& hdev_prog);

HDevProgram(const Data& data);

// Assignment operation

HDevProgram& operator=(const HDevProgram& hdev_prog);

// Destructor

virtual ~HDevProgram();

// Load a program if not yet done during construction

void LoadProgram(const char* file_name);

#ifdef _WIN32

void LoadProgram(const wchar_t* file_name);

#endif

// check whether the program was successfully loaded

bool IsLoaded() const;

// Get the program name

const char* GetName() const;

// Get the names of all local and the used external procedures

HalconCpp::HTuple GetUsedProcedureNames() const;

HalconCpp::HTuple GetLocalProcedureNames() const;

// Compile all procedures that are used by the program and that can be

// compiled with a just-in-time compiler.

// The method returns true when all used procedures could be compiled by the

// just-in-time compiler.

// Procedures that could not be compiled are called normally by the

// HDevEngine interpreter.

// To check which procedure could not be compiled and what the reason is for

// that start HDevelop and check there the compilation states.

bool CompileUsedProcedures();

(continued on next page)

H
D

ev
E

ng
in

e

188 General Information

(continued declaration of HDevProgram)

// create a program call for execution

HDevProgramCall CreateCall() const;

// This is a method provided for convenience:

// execute the program and return the program call for

// accessing the variables of the program's main procedure

HDevProgramCall Execute() const;

// get some information about the variables of the program's main procedure:

// - get the variable names as a tuple

HalconCpp::HTuple GetIconicVarNames() const;

HalconCpp::HTuple GetCtrlVarNames() const;

// - get the number of iconic and control variables

size_t GetIconicVarCount() const;

size_t GetCtrlVarCount() const;

// - get the names of the variables

// (indices of the variables run from 1 to count)

const char* GetIconicVarName(size_t var_idx) const;

const char* GetCtrlVarName(size_t var_idx) const;

// - get the dimensions of the variables

// (indices of the variables run from 1 to count)

int GetIconicVarDimension(size_t var_idx) const;

int GetCtrlVarDimension(size_t var_idx) const;

};

25.1 Overview of the Classes 189

25.1.3 HDevProgramCall

.NET: HDevProgramCall

** class HDevProgramCall

**===

** Class for managing the execution of an HDevelop program

class LIntExport HDevProgramCall

{

public:

// Create an empty HDevelop program call instance

HDevProgramCall();

// Create an HDevelop program call from a program

HDevProgramCall(const HDevProgram& prog);

// Copy constructor

HDevProgramCall(const HDevProgramCall& hdev_prog_call);

HDevProgramCall(const Data& data);

// Assignment operation

HDevProgramCall& operator=(const HDevProgramCall& hdev_prog_call);

// Destructor

virtual ~HDevProgramCall();

// Get the program

HDevProgram GetProgram() const;

// Execute program

void Execute();

// Stop execution on first line of program. This is intended for debugging

// purposes when you wish to step through a specific program call. It only

// has an effect when a debug server is running and it will only stop once.

void SetWaitForDebugConnection(bool wait_once);

// Clear program and reset callstack

// - this method stops the execution of the program after the current

// program line

void Reset();

// Get the objects / values of the variables by name or by index

// (indices of the variables run from 1 to count)

HalconCpp::HObject GetIconicVarObject(size_t var_idx);

HalconCpp::HObject GetIconicVarObject(const char* var_name);

HalconCpp::HObjectVector GetIconicVarVector(size_t var_idx);

HalconCpp::HObjectVector GetIconicVarVector(const char* var_name);

HalconCpp::HTuple GetCtrlVarTuple(size_t var_idx);

HalconCpp::HTuple GetCtrlVarTuple(const char* var_name);

HalconCpp::HTupleVector GetCtrlVarVector(size_t var_idx);

HalconCpp::HTupleVector GetCtrlVarVector(const char* var_name);

(continued on next page)

H
D

ev
E

ng
in

e

190 General Information

(continued declaration of HDevProgramCall)

// these methods are provided for efficiency:

// the results are copied directly into the tuple variable provided by

// the user without additional copying

void GetCtrlVarTuple(size_t var_idx, HalconCpp::HTuple* tuple);

void GetCtrlVarTuple(const char* var_name, HalconCpp::HTuple* tuple);

};

25.1 Overview of the Classes 191

25.1.4 HDevProcedure

.NET: HDevProcedure

** class HDevProcedure

**===

** Class for managing HDevelop procedures

class LIntExport HDevProcedure

{

public:

// Create HDevelop procedure from external or local procedure

HDevProcedure(const char* proc_name = NULL);

HDevProcedure(const char* prog_name, const char* proc_name);

HDevProcedure(const HDevProgram& prog, const char* proc_name);

#ifdef _WIN32

HDevProcedure(const wchar_t* prog_name, const char* proc_name);

#endif

// Copy constructor

HDevProcedure(const HDevProcedure& hdev_proc);

HDevProcedure(const Data& data);

// Assignment operation

HDevProcedure& operator=(const HDevProcedure& proc);

// Destructor

~HDevProcedure();

// Load a procedure if not yet done during construction

void LoadProcedure(const char* proc_name);

void LoadProcedure(const char* prog_name, const char* proc_name);

void LoadProcedure(const HDevProgram& prog, const char* proc_name);

#ifdef _WIN32

void LoadProcedure(const wchar_t* prog_name, const char* proc_name);

#endif

// Check whether the procedure was successfully loaded

bool IsLoaded() const;

// Get the name of the procedure

const char* GetName() const;

// Get the short description of the procedure. The encoding of the

// description will be in local 8 bit or utf-8, depending on the

// HALCON/C++ interface encoding. Note there is no wchar_t overload for

// Windows applications compiled with UNICODE support; however, you can

// access the description using GetInfo("short").S().TextW() instead.

const char* GetShortDescription() const;

// Get all refered procedures

HalconCpp::HTuple GetUsedProcedureNames() const;

(continued on next page)

H
D

ev
E

ng
in

e

192 General Information

(continued declaration of HDevProcedure)

// Compile all procedures that are used by the procedure and that can be

// compiled with a just-in-time compiler.

// The method returns true when all used procedures could be compiled by the

// just-in-time compiler.

// Procedures that could not be compiled are called normally by the

// HDevEngine interpreter.

// To check which procedure could not be compiled and what the reason is for

// that start HDevelop and check there the compilation states.

bool CompileUsedProcedures();

// Create a program call for execution

HDevProcedureCall CreateCall() const;

// Get name of input/output object/control parameters

HalconCpp::HTuple GetInputIconicParamNames() const;

HalconCpp::HTuple GetOutputIconicParamNames() const;

HalconCpp::HTuple GetInputCtrlParamNames() const;

HalconCpp::HTuple GetOutputCtrlParamNames() const;

// Get number of input/output object/control parameters

int GetInputIconicParamCount() const;

int GetOutputIconicParamCount() const;

int GetInputCtrlParamCount() const;

int GetOutputCtrlParamCount() const;

// Get name of input/output object/control parameters

// (indices of the parameters run from 1 to count)

const char* GetInputIconicParamName(int par_idx) const;

const char* GetOutputIconicParamName(int par_idx) const;

const char* GetInputCtrlParamName(int par_idx) const;

const char* GetOutputCtrlParamName(int par_idx) const;

// Get dimension of input/output object/control parameters

// (indices of the parameters run from 1 to count)

int GetInputIconicParamDimension(int par_idx) const;

int GetOutputIconicParamDimension(int par_idx) const;

int GetInputCtrlParamDimension(int par_idx) const;

int GetOutputCtrlParamDimension(int par_idx) const;

// Get info of procedure documentation

HalconCpp::HTuple GetInfo(const char* slot) const;

// Get info of parameter documentation by name

HalconCpp::HTuple GetParamInfo(const char* par_name, const char* slot) const;

// Get info of parameter documentation by index

(continued on next page)

25.1 Overview of the Classes 193

(continued declaration of HDevProcedure)

// Get info of parameter documentation by index

// (indices of the parameters run from 1 to count)

HalconCpp::HTuple GetInputIconicParamInfo(int par_idx, const char* slot) const;

HalconCpp::HTuple GetOutputIconicParamInfo(int par_idx, const char* slot) const;

HalconCpp::HTuple GetInputCtrlParamInfo(int par_idx, const char* slot) const;

HalconCpp::HTuple GetOutputCtrlParamInfo(int par_idx, const char* slot) const;

// Query possible slots for procedure/parameter info

HalconCpp::HTuple QueryInfo() const;

HalconCpp::HTuple QueryParamInfo() const;

};

H
D

ev
E

ng
in

e

194 General Information

25.1.5 HDevProcedureCall

.NET: HDevProcedureCall

** class HDevProcedureCall

**===

** Class for executing an HDevelop procedure and managing the parameter

** values

class LIntExport HDevProcedureCall

{

public:

// Create an empty HDevelop procedure call instance

HDevProcedureCall();

// Create HDevelop procedure call instance

HDevProcedureCall(const HDevProcedure& hdev_proc);

// Copy constructor

HDevProcedureCall(const HDevProcedureCall& hdev_proc_call);

HDevProcedureCall(const Data& data);

// Assignment operation

HDevProcedureCall& operator=(const HDevProcedureCall& hdev_proc_call);

// Destructor

~HDevProcedureCall();

// Get the procedure

HDevProcedure GetProcedure() const;

// Execute program

void Execute();

// Stop execution on first line of procedure. This is intended for debugging

// purposes when you wish to step through a specific procedure call. It only

// has an effect when a debug server is running and it will only stop once.

void SetWaitForDebugConnection(bool wait_once);

// Clear procedure and reset callstack

// - this method stops the execution of the procedure after the current

// program line

void Reset();

(continued on next page)

25.1 Overview of the Classes 195

(continued declaration of HDevProcedureCall)

// Set input object/control parameter

void SetInputIconicParamObject(int par_idx, const HalconCpp::HObject& obj);

void SetInputIconicParamObject(const char* par_name, const HalconCpp::HObject& obj);

void SetInputIconicParamVector(int par_idx, const HalconCpp::HObjectVector& vector);

void SetInputIconicParamVector(const char* par_name, const HalconCpp::HObjectVector& vector);

void SetInputCtrlParamTuple(int par_idx, const HalconCpp::HTuple& tuple);

void SetInputCtrlParamTuple(const char* par_name, const HalconCpp::HTuple& tuple);

void SetInputCtrlParamVector(int par_idx, const HalconCpp::HTupleVector& vector);

void SetInputCtrlParamVector(const char* par_name, const HalconCpp::HTupleVector& vector);

// Get the objects / values of the parameters by name or by index

// (indices of the variables run from 1 to count)

HalconCpp::HObject GetOutputIconicParamObject(int par_idx) const;

HalconCpp::HObject GetOutputIconicParamObject(const char* par_name) const;

HalconCpp::HObjectVector GetOutputIconicParamVector(int par_idx) const;

HalconCpp::HObjectVector GetOutputIconicParamVector(const char* par_name) const;

HalconCpp::HTuple GetOutputCtrlParamTuple(int par_idx) const;

HalconCpp::HTuple GetOutputCtrlParamTuple(const char* par_name) const;

HalconCpp::HTupleVector GetOutputCtrlParamVector(int par_idx) const;

HalconCpp::HTupleVector GetOutputCtrlParamVector(const char* par_name) const;

// These methods are provided for efficiency:

// the results are copied directly into the tuple variable provided by

// the user without additional copying

void GetOutputCtrlParamTuple(int par_idx, HalconCpp::HTuple* tuple) const;

void GetOutputCtrlParamTuple(const char* par_name, HalconCpp::HTuple* tuple) const;

};

Note that HDevEngine/.NET provides additional methods that return iconic output parameters of a pro-
cedure call in the corresponding class (GetOutputIconicParamImage, GetOutputIconicParamRegion,
GetOutputIconicParamXld).

H
D

ev
E

ng
in

e

196 General Information

25.1.6 HDevOperatorImplCpp

.NET: IHDevOperators

** class HDevOperatorImplCpp

**===

** Class for the implemention of HDevelop internal operators

class LIntExport HDevOperatorImplCpp

{

public:

HDevOperatorImplCpp();

// Copy constructor

HDevOperatorImplCpp(const HDevOperatorImplCpp& hdev_op_impl);

HDevOperatorImplCpp(const Data& data);

// Assignment operation

HDevOperatorImplCpp& operator=(const HDevOperatorImplCpp& hdev_op_impl);

// Destructor

virtual ~HDevOperatorImplCpp();

virtual int DevClearWindow();

virtual int DevCloseWindow();

virtual int DevSetWindow(const HalconCpp::HTuple& win_id);

virtual int DevGetWindow(HalconCpp::HTuple* win_id);

virtual int DevDisplay(const HalconCpp::HObject& obj);

virtual int DevDispText(const HalconCpp::HTuple& string, const HalconCpp::HTuple& coordSystem,

const HalconCpp::HTuple& row, const HalconCpp::HTuple& column,

const HalconCpp::HTuple& color, const HalconCpp::HTuple& genParamName,

const HalconCpp::HTuple& genParamValue);

virtual int DevSetWindowExtents(const HalconCpp::HTuple& row, const HalconCpp::HTuple& col,

const HalconCpp::HTuple& width, const HalconCpp::HTuple& height);

virtual int DevSetDraw(const HalconCpp::HTuple& draw);

virtual int DevSetContourStyle(const HalconCpp::HTuple& style);

virtual int DevSetShape(const HalconCpp::HTuple& shape);

virtual int DevSetColored(const HalconCpp::HTuple& colored);

virtual int DevSetColor(const HalconCpp::HTuple& color);

virtual int DevSetLut(const HalconCpp::HTuple& lut);

virtual int DevSetPaint(const HalconCpp::HTuple& paint);

virtual int DevSetPart(const HalconCpp::HTuple& row1, const HalconCpp::HTuple& col1, const HalconCpp::HTuple& row2,

const HalconCpp::HTuple& col2);

virtual int DevSetLineWidth(const HalconCpp::HTuple& width);

virtual int DevOpenWindow(const HalconCpp::HTuple& row, const HalconCpp::HTuple& col, const HalconCpp::HTuple& width,

const HalconCpp::HTuple& height, const HalconCpp::HTuple& background,

HalconCpp::HTuple* win_id);

};

25.1.7 HDevEngineException

.NET: HDevEngineException

25.2 Debugging HDevEngine From HDevelop 197

** class HDevEngineException

**===

** Class for HDevelop engine exceptions

class LIntExport HDevEngineException

{

public:

// Exception categories

enum ExceptionCategory

{

Exception, // Generic

ExceptionInpNotInit, // Error input parameters not initialized

ExceptionCall, // Error HALCON or HDevelop operator call

ExceptionFile // Error opening or reading HDevelop file

};

// Create HDevelop engine exception

HDevEngineException(const char* message, ExceptionCategory category = Exception, const char* exec_proc_name = "",

int prog_line_num = -1, const char* prog_line_name = "", Herror h_err_nr = H_MSG_VOID,

const HalconCpp::HTuple& user_data = HalconCpp::HTuple());

HDevEngineException(const HDevEngineException& exc);

HDevEngineException(const Data& data);

HDevEngineException& operator=(const HDevEngineException& exc);

virtual ~HDevEngineException();

// Error text

const char* Message() const;

// Category of exception

ExceptionCategory Category() const;

const char* CategoryText() const;

// Name of executed procedure

const char* ExecProcedureName() const;

// Number of executed procedure or operator program line

int ProgLineNum() const;

// Name of executed procedure or operator program line

const char* ProgLineName() const;

// HALCON error code

Herror HalconErrorCode() const;

HalconCpp::HTuple UserData() const;

void UserData(HalconCpp::HTuple& user_Data) const;

};

25.2 Debugging HDevEngine From HDevelop

HDevEngine applications can be debugged remotely using HDevelop. The application must explicitly enable
remote debugging itself. This will start a debug server, which accepts debug connections from HDevelop. How to
attach to an application from HDevelop is described in the HDevelop User’s Guide, chapter 9 on page 299. The
following sections describe remote debugging from the perspective of HDevEngine. Two of the supplied example
programs illustrate how to deploy the debug server in an application:

• hdevengine/c#/UseDebugServer

• hdevengine/cpp/use_debug_server

25.2.1 Configuring the Debug Server

The debug server is configured using calls to HDevEngine::SetEngineAttribute. It is recommended to set up
the debug server before starting it. For example, to set up a password:

H
D

ev
E

ng
in

e

198 General Information

private HDevEngine MyEngine = new HDevEngine();

MyEngine.SetEngineAttribute("debug_password", "mysecretpassword");

The following attributes are supported:

Attribute Default value Description
debug_port 57786 Specifies the port number of the socket where the debug

server waits for incoming connections.
debug_password "" Specifying a password provides a basic layer of protec-

tion against misuse. For security reasons, it is highly rec-
ommended to always supply a password. If a password is
set, it must be entered in HDevelop to allow the connec-
tion.

debug_wait_for_connection false If true, the engine switches into “stopped state” after
starting the debug server (see below). This has the effect
that any application thread that enters procedure execu-
tion via HDevEngine will stop on the first line of script
code. This way, you can start debugging from the begin-
ning of your code upon connecting from HDevelop.

25.2.2 Controlling the Debug Server

HDevEngine provides two member functions to start and stop the debug server.

MyEngine.StartDebugServer();

...

MyEngine.StopDebugServer();

Usually, HDevEngine executes HDevelop code continuously without any interruption. However, once the debug
server has started, the execution of HDevelop code can be interrupted for debugging purposes.

There are multiple ways for HDevEngine to enter a stopped state. The first two are available through the API.
They work regardless of whether HDevelop is actually attached. Please note that the only way to continue program
execution is to actually attach HDevelop to the debug server and control the execution from there.

• HDevEngine::SetEngineAttribute (before starting the debug server):

MyEngine.SetEngineAttribute("debug_wait_for_connection","true");

// execution will stop on first line of HDevelop code that is executed

• HDevProcedureCall::SetWaitForDebugConnection (for a specific procedure call):

HDevProcedure mProcPreprocess;

HDevProcedureCall mCallPreprocess;

...

mProcPreprocess = new HDevProcedure("preprocess_nuts");

mCallPreprocess = mProcPreprocess.CreateCall();

mCallPreprocess.SetWaitForDebugConnection(true);

mCallPreprocess.Execute(); // execution will stop on first line of this call

Other ways to stop the program execution are triggered only if HDevelop is attached to the debug server:

• A Stop command (
�� ��F9) is sent from HDevelop.

• An activated break point on a program line or variable is reached by HDevEngine.

• An unhandled error occurs. Normally, HDevEngine would throw a HDevException in this case, but in
debug mode a notification is sent out to HDevelop so that the error condition can be examined there. The
delayed exception will be thrown when the program execution continues.

Regardless of the reason the stopped state is always global, i.e., other application threads will also stop when
executing HDevelop code.

25.3 Tips and Tricks 199

25.2.3 Security Implications

Like any remotely accessible server, careful attention must be paid to prevent unauthorized access to the debug
server. Although the firewall must be configured to allow connections to the configured port, it is your responsibil-
ity to limit the access to authorized clients only.

As a minimal security measure, always set up a password for the debug server. Please note that the debug server
itself provides no measures against brute-force or denial-of-service attacks.

Note the following if the debug server is running and no password is set:

• The execution of the external application can be stopped by a third party.

• Unprotected procedures can be viewed and their code copied.

Apart from the transmission of passwords, the communication between HDevelop and the debug server is not
encrypted. Protected procedures are transmitted in their encrypted binary form. If you worry about other sensitive
data like images, you should use a VPN (e.g., an SSH tunnel) when connecting from the outside to the local
network.

25.2.4 Limitations

• Debugging of HDevelop programs (i.e., started with HDevProgramCall) is not supported.

• Subthreads started with par_start cannot be debugged.

• JIT-compiled procedures cannot be debugged.

Further limitations of remote debugging from the HDevelop side are listed in the HDevelop User’s Guide, sec-
tion 9.9 on page 302.

25.3 Tips and Tricks

25.3.1 Troubleshooting

? Executed program or procedure raises exception for display operators like set_tposition when not
using implementation of display operators
If you are not using an implementation of HDevelop’s internal display operators (dev_*), calls to these
operators in the executed HDevelop program or procedure are simply ignored. However, if the program or
procedure contains other, “external” display operators like set_tposition or write_string, which need
a window handle as input parameter, the program / procedure will raise an exception at this operator if the
window handle has not been instantiated.

Typically, this problem will not arise when executing programs, because you will in most cases use an
implementation of the display operators. When executing procedures, we recommend that you leave out
the external display operators that use window handles. If this is not possible, you could place them in a
separate procedure and use the implementation of display operators for just this procedure. Alternatively,
initialize the window handle with a value like -1 and test it before executing the external display operators.

? External procedures cannot call local procedures
Note that local procedures can call external procedures but not the other way round.

25.3.2 Loading and Unloading Procedures

To ensure that programs developed with HDevelop can be executed with HDevEngine without any further action,
all standard procedures (see the HDevelop User’s Guide, section 5.4 on page 45) are automatically loaded when
HDevEngine is started.

In most applications there is no need to delete loaded HDevelop procedures explicitly using UnloadProcedure.
A reason might be to free memory.

H
D

ev
E

ng
in

e

200 General Information

Please note that when creating a procedure with the class HDevProcedure, the procedure is loaded together with
all the procedures it uses. In contrast, UnloadProcedure deletes only the specified procedure. To delete the auto-
matically loaded procedures, you can query their names using GetLoadedProcedureNames and then delete them
(if you are sure that they are not used by another loaded procedure!), or you can use UnloadAllProcedures

to unload all external procedures. Note that after calling UnloadProcedure or UnloadAllProcedures,
GetProcedureNames still returns the names of the unloaded procedures.

Index 201

Index

add HALCON/.NET to .NET Core applicaton, 62
add HALCON/.NET to .NET Framework applicaton,

63
add HALCON/.NET to applicaton, 62
add HALCON/Python to Python application, 91
add reference to HALCON/.NET, 63
add to application (HDevEngine/Python), 174
allocate memory for tuple (HALCON/C), 109
applications (HDevEngine/Python), 174
automatic operator parallelization, 15

barrier (multithreading), 17

C# application
example, 81

call operator (HALCON/.NET), 66
call operator (HALCON/C++)

detailed description, 37
overview, 34

call operator generically (HALCON/C), 110
call operator in tuple mode (HALCON/C), 109
capitalization (HALCON/Python), 98
cast methods of HTuple (HALCON/.NET), 72
combine exported HDevelop code with HAL-

CON/.NET classes, 85
combine object-oriented and procedural code (HAL-

CON/C++), 41
compile HALCON/.NET application with Mono, 83
condition (multithreading), 17
constructors (HALCON/.NET), 67
constructors (HALCON/C++), 37
control parameters (HALCON/C), 106
control parameters (HALCON/C++), 44
control tuples (HALCON/.NET), 71
create applications with Python, 91
create C application (HALCON/C), 121
create C++ application (HALCON/C++), 49
create C# application (HALCON/.NET), 61
create executable (HALCON/C)

Linux, 124
Windows, 123

create executable (Halcon/C++)
Linux, 53
Windows, 51

create executable (HDevEngine/C++), 137
create tuple (HALCON/.NET), 72
create tuple (HALCON/C), 109
create Visual Basic .NET application (HAL-

CON/.NET), 61
customize Visual Studio for HALCON/.NET, 63
customize visualization (HALCON/.NET), 78

declare class instance (HALCON/.NET), 67
deploy HALCON/.NET application, 64

Linux, 83
deploy HALCON/.NET application (.NET Core), 64
deploy HALCON/.NET application (.NET Frame-

work), 64
deploy HALCON/Python application, 92
destroy tuple (HALCON/C), 110
destructors (HALCON/C++), 38
dev operators (HDevEngine/Python), 181
develop application (HDevEngine), 134
development environments and HALCON/.NET, 61
display classes (HDevEngine/.NET), 157
display results of HDevelop procedure (HDevEn-

gine/.NET), 155
display results of HDevelop procedure (HDevEn-

gine/C++), 142
display results of HDevelop program (HDevEn-

gine/.NET), 152
display results of HDevelop program (HDevEn-

gine/C++), 140

error handling (HALCON/.NET), 75
error handling (HALCON/C), 119
error handling (HALCON/C++), 40
error handling (HALCON/Python), 97
error handling (HDevEngine/.NET), 158
error handling (HDevEngine/C++), 144
event (multithreading), 17
execute external HDevelop procedure (HDevEn-

gine/.NET), 153
execute external HDevelop procedure (HDevEn-

gine/C++), 140
execute HDevelop procedure (HDevEngine/.NET),

152, 154
execute HDevelop procedure (HDevEngine/C++),

140, 142
execute HDevelop program (HDevEngine/.NET),

151, 152
execute HDevelop program (HDevEngine/C++),

138, 139
execute local HDevelop procedure (HDevEn-

gine/.NET), 155
execute local HDevelop procedure (HDevEn-

gine/C++), 142

finalizers (HALCON/.NET), 68
first example (HALCON/C), 103
first example (HALCON/C++), 31
first example (HALCON/Python), 89
first example (HDevEngine/Python), 173

In
de

x

202 Index

garbage collection (HALCON/.NET), 68
garbage collection (HALCON/Python), 98
get tuple element (HALCON/.NET), 71
get tuple element (HALCON/C), 109
global functionality (HDevEngine/Python), 174

HALCON language interface for C applications, 13
HALCON language interface for C++ applications,

13
HALCON language interface for C# applications, 13
HALCON language interface for managed C++ ap-

plications, 13
HALCON language interface for Visual Basic .NET

applications, 13
HALCON spy, 23
HALCON/.NET

overview, 59
HALCON/.NET Interface, 65
HALCON/C

example, 122
HALCON/C++

example, 50
overview, 31, 103

HALCON/Python
overview, 89

HALCON/Python Interface, 93
HALCON/Python XL, 99
handle classes (HALCON/C++), 46
HDevEngine

overview, 133
HDevEngine (HDevEngine/.NET class), 184
HDevEngine (HDevEngine/C++ class), 184
HDevEngine troubleshooting, 199
HDevEngine XL, 135
HDevEngine/.NET

example, 149
overview, 149

HDevEngine/C++
example, 138
overview, 137

HDevEngine/Python
overview, 173

HDevEngine/Python intro, 173
HDevEngineException (HDevEngine/.NET class),

196
HDevEngineException (HDevEngine/C++ class),

196
HDevOperatorImpl (HDevEngine/C++ class), 196
HDevProcedure (HDevEngine/.NET class), 191
HDevProcedure (HDevEngine/C++ class), 191
HDevProcedureCall (HDevEngine/.NET class), 194
HDevProcedureCall (HDevEngine/C++ class), 194
HDevProgram (HDevEngine/.NET class), 187
HDevProgram (HDevEngine/C++ class), 187
HDevProgramCall (HDevEngine/.NET class), 189
HDevProgramCall (HDevEngine/C++ class), 189
HHandle class (HALCON/Python), 95
Hobject (HALCON/C data type), 105
HObject (HALCON/C++), 43
HObject class (HALCON/Python), 95

HOperatorSet (HALCON/.NET class), 85
HRegion (HALCON/C++), 43
HSmartWindowControl, 63, 76–78
HSmartWindowControlWPF, 63, 77
HString (HALCON/C++), 45
HTuple (HALCON/.NET class), 71
Htuple (HALCON/C data type), 108
HTuple (HALCON/C++), 44
HVector (HALCON/.NET class), 74
Hvector (HALCON/C data type), 111
HVector (HALCON/C++), 46
HWindow (HALCON/C++), 46
HXLD (HALCON/C++), 44

I/O streams (HALCON/C++), 42
iconic objects (HALCON/.NET), 71
iconic objects (HALCON/C), 105
iconic objects (HALCON/C++), 43
IHDevOperators (HDevEngine/.NET class), 196
implement display operators (HDevEngineCpp), 143
initialize automatic operator parallelization, 15
initialize class instance (HALCON/.NET), 67
input and output (HALCON/Python), 94
installed file structure (HALCON/C), 121
installed file structure (HALCON/C++), 49
interface (HDevEngine/Python), 174

just-in-time (JIT) compiler, 147, 171
overview, 135

load HDevelop procedure (HDevEngine/.NET), 153
load HDevelop procedure (HDevEngine/C++), 141
load HDevelop program (HDevEngine/.NET), 151
load HDevelop program (HDevEngine/C++), 139

managed C++ application
example, 82

memory management (HALCON/C++), 41
module import (HALCON/Python), 93
monitor HALCON program, 23
Mono and HALCON/.NET, 83
multithreading (HDevEngine/Python), 182
mutex (multithreading), 17

named parameters (HALCON/Python), 98
namespace Halcon (HALCON/C++), 33
namespace HalconDotNet (HALCON/.NET), 65

object-oriented HALCON/C++, 33
online help (HALCON/.NET), 66
online help (HALCON/C++), 34
operators as standalone functions (HAL-

CON/Python), 94
output parameters of HDevelop procedure (HDevEn-

gine/.NET), 155
output parameters of HDevelop procedure (HDevEn-

gine/C++), 142
output values (HALCON/Python), 96
overload operator (HALCON/.NET), 69
overloads for arithmetic tuple operations (HAL-

CON/.NET), 74

Index 203

parallel programming (HDevEngine)
overview, 134

parallel programming (HDevEngine/.NET), 159
parallel programming (HDevEngine/C**), 146
parallel programming design issues, 17
parallel programming with HALCON

example, 18
overview, 16

parallelize operators on channel level, 15
parallelize operators on domain level, 15
parallelize operators on internal data level, 15
parallelize operators on tuple level, 15
parameters (HALCON/C++), 35
procedural HALCON/C++, 33
procedures (HDevEngine/Python), 176
programs (HDevEngine/Python), 179

reentrancy of HALCON operators, 16
remote access (HALCON/.NET), 85
resolve ambiguity of HTuple (HALCON/.NET), 72
restrictions for using Mono and HALCON/.NET, 83
results of HDevelop program (HDevEngine/.NET),

152
results of HDevelop program (HDevEngine/C++),

139
return values (HALCON/C), 119

set external procedure path (HDevEngine/.NET),
153

set external procedure path (HDevEngine/C++), 140
set input parameters of HDevelop procedure (HDev-

Engine/.NET), 154
set input parameters of HDevelop procedure (HDev-

Engine/C++), 141
set tuple element (HALCON/C), 109
simple mode (HALCON/C), 108
simple mode (HALCON/C++), 38
spinlocks, thread pool and real-time scheduling, 20
switch off automatic operator parallelization, 19

thread safety of HALCON operators, 16
tuple mode (HALCON/.NET), 70
tuple mode (HALCON/C), 108

example, 110
tuple mode (HALCON/C++), 38
tuple operators (HALCON/.NET), 73
tuple representation (HALCON/Python), 95

unload HDevelop procedure from HDevEngine, 199
use exported HDevelop code (HALCON/.NET), 84
use HALCON operators from HALCON/Python, 93
use HALCON Spy on multi-processing hardware, 23
use HALCON/.NET classes, 65
use HDevelop procedure in HALCON/.NET, 84
use HDevelop program in HALCON/.NET, 84
use HDevEngine/.NET (.NET Core), 149
use HDevEngine/.NET (basics), 149
use HDevEngine/.NET in Visual Studio, 149
use image acquisition interface on multi-processing

hardware, 20

UTF-8 encoding (HALCON/Python), 98

vectors (HALCON/.NET), 74
vectors (HALCON/C), 111
vectors (HALCON/C++), 46
vectors (HDevEngine/Python), 181
Visual Basic .NET application

example, 82
visualization (HALCON/.NET), 76

In
de

x

	I General Issues
	1 Which HALCON Interface to Use
	2 Parallel Programming and HALCON
	2.1 Automatic Parallelization
	2.1.1 Initializing HALCON
	2.1.2 Methods of Automatic Parallelization

	2.2 Parallel Programming
	2.2.1 A Closer Look at Reentrancy
	2.2.2 Program Design Issues for Parallelization
	2.2.3 Multithreading Operators
	2.2.4 Examples

	2.3 Threading Issues With Graphics
	2.3.1 Microsoft Windows
	2.3.2 X11

	2.4 Using HALCON with OpenMP
	2.5 Additional Information on HALCON
	2.5.1 Customizing the Parallelization Mechanisms
	2.5.2 Using an Image Acquisition Interface on Multi-Core or Multi-Processor Hardware
	2.5.3 Spinlocks, the HALCON Thread Pool, and Real-time Scheduling

	3 Tips and Tricks
	3.1 Monitoring HALCON Programs With HALCON Spy
	3.1.1 HALCON Spy on Multi-Core or Multi-Processor Hardware

	3.2 Terminating HALCON Library
	3.3 Inspecting HALCON Variables in Visual Studio
	3.4 Handling Licensing Errors
	3.5 Graphical Applications

	II Programming With HALCON/C++
	4 Introducing HALCON/C++
	4.1 A First Example

	5 Basics of the HALCON/C++ Interface
	5.1 HalconCpp Namespace
	5.2 Calling HALCON Operators
	5.2.1 A Closer Look at Parameters
	5.2.2 Calling Operators via Classes
	5.2.3 Constructors and Halcon Operators
	5.2.4 Destructors and Halcon Operators
	5.2.5 The Tuple Mode

	5.3 Error Handling
	5.4 Memory Management
	5.5 How to Combine Procedural and Object-Oriented Code
	5.6 I/O Streams
	5.7 Windows API Collisions

	6 The HALCON Parameter Classes
	6.1 Iconic Objects
	6.1.1 Regions
	6.1.2 Images
	6.1.3 XLD Objects

	6.2 Control Parameters
	6.2.1 Tuples
	6.2.2 Strings
	6.2.3 Classes Encapsulating Handles

	6.3 Vectors

	7 Creating Applications With HALCON/C++
	7.1 Relevant Directories and Files
	7.2 Example Programs
	7.3 Relevant Environment Variables
	7.4 Writing a Program With Non-ASCII Characters
	7.5 Windows
	7.6 Linux

	8 Typical Image Processing Problems
	8.1 Thresholding an Image
	8.2 Edge Detection
	8.3 Dynamic Threshold
	8.4 Texture Transformation
	8.5 Eliminating Small Objects

	III Programming With HALCON/.NET
	9 Introducing HALCON/.NET
	9.1 A First Example

	10 Creating Applications With HALCON/.NET
	10.1 Creating Applications With HALCON/.NET
	10.2 .NET Development Environments
	10.3 Adding HALCON/.NET to an Application
	10.3.1 Adding HALCON/.NET to a .NET Core Application
	10.3.2 Adding HALCON/.NET to a .NET Framework Application

	10.4 Deploying an Application
	10.5 Using a Newer HALCON/.NET Release

	11 HALCON/.NET Interface
	11.0.1 Specifying the Namespace
	11.1 Using HALCON/.NET Classes
	11.1.1 Online Help
	11.1.2 Calling HALCON Operators
	11.1.3 From Declaration to Finalization
	11.1.4 Operator Overloads

	11.2 Working With Tuples
	11.2.1 Calling HALCON Operators with Single or Multiple Values
	11.2.2 Iconic Tuples
	11.2.3 Control Tuples and the Class HTuple

	11.3 Working With Vectors
	11.4 Error Handling
	11.5 Visualization
	11.6 Window Controls for Visualization
	11.7 Adding and Customizing HSmartWindowControl for the Visualization

	12 Additional Information
	12.1 Provided Examples
	12.1.1 C#
	12.1.2 Visual Basic .NET
	12.1.3 C++

	12.2 HALCON/.NET Applications under Linux Using Mono
	12.2.1 Restrictions
	12.2.2 Deploying HALCON/.NET Applications Created under Windows
	12.2.3 Compiling HALCON/.NET Applications with Mono
	12.2.4 Using Other GUI Libraries

	12.3 Using HDevelop Programs
	12.3.1 Using the Template Application
	12.3.2 Combining the Exported Code with the HALCON/.NET Classes

	12.4 HALCON/.NET and Remote Access

	IV Programming With HALCON/Python
	13 Introducing HALCON/Python
	13.1 A First Example

	14 Creating Applications With HALCON/Python
	14.1 Python Development Environments
	14.2 Adding HALCON/Python to an Application
	14.3 Deploying an Application
	14.4 Using a Newer HALCON/Python Release

	15 HALCON/Python Interface
	15.1 Module Import
	15.2 Using HALCON Operators From HALCON/Python
	15.3 Operators Are Standalone Functions
	15.4 Inputs Are Parameters, Outputs Are Return Values
	15.5 HALCON Tuples Are Represented With Native Python Types
	15.6 HHandle
	15.7 HObject
	15.8 Output Values
	15.9 Error Handling
	15.10 Garbage Collection
	15.11 Named Parameters
	15.12 Operator and Parameter Capitalization
	15.13 UTF-8 in HALCON/Python
	15.14 HALCON/Python with HALCON XL

	V Programming With HALCON/C
	16 Introducing HALCON/C
	16.1 A First Example

	17 The HALCON Parameter Classes
	17.1 Image Objects
	17.2 Control Parameters
	17.2.1 String Encoding
	17.2.2 Control Parameter Tuples
	17.2.3 Simple Mode
	17.2.4 Tuple Mode

	17.3 Vectors

	18 Return Values of HALCON Operators
	19 Creating Applications With HALCON/C
	19.1 Relevant Directories and Files
	19.2 Example Programs
	19.3 Relevant Environment Variables
	19.4 Windows
	19.5 Linux

	20 Typical Image Processing Problems
	20.1 Thresholding
	20.2 Detecting Edges
	20.3 Dynamic Threshold
	20.4 Simple Texture Transformations
	20.5 Eliminating Small Objects
	20.6 Selecting Specific Orientations
	20.7 Smoothing Region Boundaries

	VI Using HDevEngine
	21 Introducing HDevEngine
	22 HDevEngine in C++ Applications
	22.1 How to Create an Executable Application With HDevEngine/C++
	22.2 How to Use HDevEngine/C++
	22.2.1 Executing an HDevelop Program
	22.2.2 Executing HDevelop Procedures
	22.2.3 Display
	22.2.4 Error Handling
	22.2.5 Creating Multithreaded Applications
	22.2.6 Executing an HDevelop Program with Vector Variables

	22.3 Using the Just-in-time Compiler With HDevEngine/C++

	23 HDevEngine in .NET Applications
	23.1 Basics
	23.1.1 Adding HDevEngine/.NET to a .NET Core Application
	23.1.2 Adding HDevEngine/.NET to a .NET Framework Application

	23.2 Examples
	23.2.1 Creating an HDevEngine/.NET Application
	23.2.2 Using HDevEngine/.NET
	23.2.3 Executing an HDevelop Program
	23.2.4 Executing HDevelop Procedures
	23.2.5 Display
	23.2.6 Error Handling
	23.2.7 Creating Multithreaded Applications
	23.2.8 Executing an HDevelop Program with Vector Variables

	23.3 Using the Just-in-time Compiler With HDevEngine/.NET

	24 HDevEngine In Python Applications
	24.1 Introduction
	24.1.1 A First Example

	24.2 Creating Applications With HDevEngine/Python
	24.2.1 Adding HDevEngine/Python to a Python Application

	24.3 HDevEngine/Python Interface
	24.3.1 Global Functionality
	24.3.2 Calling HDevelop Procedures
	24.3.3 Calling HDevelop Programs
	24.3.4 Dev Operators
	24.3.5 HALCON Vectors
	24.3.6 Multithreading

	25 General Information
	25.1 Overview of the Classes
	25.1.1 HDevEngine, HDevEngineX
	25.1.2 HDevProgram, HDevProgramX
	25.1.3 HDevProgramCall, HDevProgramCallX
	25.1.4 HDevProcedure, HDevProcedureX
	25.1.5 HDevProcedureCall, HDevProcedureCallX
	25.1.6 HDevOperatorImpl, IHDevOperators, HDevOperatorImplX
	25.1.7 HDevEngineException

	25.2 Debugging HDevEngine From HDevelop
	25.2.1 Configuring the Debug Server
	25.2.2 Controlling the Debug Server
	25.2.3 Security Implications
	25.2.4 Limitations

	25.3 Tips and Tricks
	25.3.1 Troubleshooting
	25.3.2 Loading and Unloading Procedures

	Index

