
a product of MVTec

HALCON for Arm-based Platforms

HALCON 23.05 Progress

All about using HALCON on Arm®-based platforms, Version 23.05.0.0

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

Copyright © 2017-2023 by MVTec Software GmbH, Munich, Germany MVTec Software GmbH

Protected by the following patents: US 7,239,929, US 7,751,625, US 7,953,290, US 7,953,291, US 8,260,059, US 8,379,014,
US 8,830,229, US 11,328,478. Further patents pending.

Arm is a registered trademark of Arm Limited.
Linux is a trademark of Linus Torvalds.

HALCON for Arm-based platforms contains multiple-precision arithmetic code originally written by David Ireland, Copyright
© 2001-8 by D.I. Management Services Pty Limited <www.di-mgt.com.au>, and is used with permission.

HALCON for Arm-based platforms contains FIPS 180-2 SHA-224/256/384/512 implementation Copyright © 2005 Olivier
Gay <olivier.gay@a3.epfl.ch>.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at: http://www.halcon.com

http://www.halcon.com

About This Manual

This manual provides supplementary information about using HALCON on Arm®-based platforms.

Chapter 1 briefly describes the specifics for these platforms and the available development methods.

Chapter 2 briefly explains how to install HALCON on the development PC and on the Arm-based platform.

Chapter 3 explains how to develop applications in HDevelop or the programming languages C, C++, C#, Python
and HDevEngine.

An up-to-date list of supported platforms can be found on our website http://www.mvtec.com/products/

embedded-vision/all-products.

http://www.mvtec.com/products/embedded-vision/all-products
http://www.mvtec.com/products/embedded-vision/all-products

Contents

1 Using HALCON on Arm-based Platforms 7
1.1 Requirements . 7
1.2 Limitations . 7
1.3 Differences to Other Platforms . 7
1.4 How to Develop HALCON Applications for Arm-based Platforms 8
1.5 Where to Find Further Information . 8

2 Getting Started 9
2.1 Installing the Necessary Components . 9

2.1.1 Installing HALCON on the Development PC Running Under Linux 9
2.1.2 Installing HALCON on the Arm-based Platform . 10

2.2 Licensing . 10
2.2.1 Installing the License on the Arm-based Platform . 10

2.3 Uninstalling HALCON . 10

3 Creating Applications 11
3.1 Configuration Files and Directory Structure . 11

3.1.1 Cross-Compile . 11
3.1.2 Compile and Run on a Native Machine . 13

3.2 Developing in HDevelop . 13
3.3 Creating C++ Applications . 14
3.4 Creating C Applications . 14
3.5 Creating C# Applications . 14
3.6 Creating Python Applications . 15
3.7 Using HDevEngine . 15

Using HALCON on Arm-based Platforms 7

Chapter 1

Using HALCON on Arm-based
Platforms

This chapter provides a brief overview on the specifics of using HALCON on Arm-based platforms. At the end of
the chapter you can find a list of other manuals that help you to work with HALCON.

1.1 Requirements

The system requirements can be found in the Installation Guide, section 1.4 on page 8.

For graphical applications, X11 support is required.

The licensing on Arm-based platforms is either based on a product license dongle or a Card IDentification (CID)
number of a SD card or other memory cards. In order to access a dongle, the hidraw device must exist, i.e., it
must be enabled in the kernel configuration. If necessary, a custom kernel needs to be compiled using the kernel
option CONFIG_HIDRAW=y. Naturally, a USB port is required to connect the dongle. In case of a card identification
number, hardware support for the memory device is required. You can query the CID numbers provided by your
system by calling the HALCON tool hhostid -i from your shell.

1.2 Limitations

The following limitations apply compared to other platforms:

• no XL version

• no MAC-based licensing, no evaluation licenses

• no HDevelop

• no hcomp, thus extension packages have to be cross-compiled on the development PC

An up-to-date list of supported image acquisition interfaces can be found on our website http://www.mvtec.

com/products/interfaces.

1.3 Differences to Other Platforms

The main difference in developing applications with HALCON for Arm-based platforms compared to other plat-
forms is that you usually do not do this on the Arm-based platform itself, but on a separate development PC, using
a cross compiler toolchain to generate the executable. Then you upload the executable to the Arm-based platform
and run it there.

In
tr

od
uc

tio
n

http://www.mvtec.com/products/interfaces
http://www.mvtec.com/products/interfaces

8 Using HALCON on Arm-based Platforms

HALCON development tools like HDevelop are not available for Arm-based platforms, so you actually need two
installations of HALCON:

On the development PC:

• a development version of HALCON

On the Arm-based platform:

• a runtime installation of HALCON

In (the rare) case you have a native toolchain for your Arm-based platform it is of course possible to use it directly
with HALCON. But even in this case you need to own a HALCON development license, and the HALCON
development tools are not available on your Arm-based platform.

Example programs specific to the Arm-based platform can be found in examples/arm-linux. Please note that
other example programs can only be compiled if the corresponding makefiles or CMakeLists.txt are adjusted.

In the following we will always assume you are using a cross compiler toolchain as this is the most common way
at the time of writing.

1.4 How to Develop HALCON Applications for Arm-based Plat-
forms

There are different ways to develop HALCON applications for Arm-based platforms: The more comfortable way
is to develop the machine vision part using HDevelop, HALCON’s interactive development environment. Here
you can easily find the suitable operators and parameters to solve your vision task. To integrate the machine vision
part into your application, you have to either use one of the programming languages or HDevEngine.

Of course, you can also develop the complete application in your favorite programming language.

Unless you use HDevEngine, a cross compiler is needed to create an executable. Finally, you upload it to the
Arm-based platform. These development methods are described in more detail in chapter 3 on page 11.

1.5 Where to Find Further Information

This manual concentrates on specific topics for using HALCON on Arm-based platforms. The list below shows
you where to find information about other aspects that apply to HALCON in general.

• Installation Guide
If you have not used HALCON before, this manual shows you how to install HALCON, which is the first
step to using HALCON.

• Quick Guide
This manual is your gate into the world of HALCON. It gives a short introduction to HALCON and presents
HALCON example programs from various industries and application areas.

• Solution Guide I
This manual describes the main machine vision methods and how to use them in HALCON, including many
examples.

• Solution Guide II + III
These manuals consist of multiple Solution Guides, which supply more detailed information about specific
machine vision methods.

• HDevelop User’s Guide
This manual is your comprehensive guide to HDevelop, HALCON’s integrated development environment.

• Programmer’s Guide
This manual shows you how to use HALCON from a programming language. It contains detailed information
about the provided interfaces and their data types, classes, etc., and also explains how to use HDevEngine to
directly run HDevelop scripts and procedures from applications written in a programming language.

• HALCON Operator Reference
The reference manual contains the detailed description of all HALCON operators.

Getting Started 9

Chapter 2

Getting Started

This chapter guides you through your first steps with HALCON for Arm-based platforms, mentioning the particu-
larities concerning the steps

• installing the necessary components (section 2.1),

• licensing (section 2.2)

Please note that throughout this manual we assume that you already know how to access the Arm-based platform
from your development PC (see the corresponding documentation from the platform’s vendor for details).

2.1 Installing the Necessary Components

On your development PC, you must install the following components:

• A development version of HALCON including a license.

• The HALCON libraries compiled for the target architecture (aarch64-linux or armv7a-linux).

• Compiler, cross compiler for the target architecture for aarch64-linux and armv7a-linux: gcc 5.5.

2.1.1 Installing HALCON on the Development PC Running Under Linux

On the development PC, a HALCON installation (with component selection “Full” or “Custom”) is required.
The installation procedure is described in the Installation Guide, section 2.2.1 on page 15. The installation script
supports the installation of the required files for cross-compilation.

To test whether the installation and licensing was successful, we recommend to start HDevelop. The menu item
Help . About shows which HALCON version is installed, thus, you can check whether you successfully installed
HALCON 23.05.0.0.

The following directories on the development PC will contain content specific for HALCON on Arm-based plat-
forms:

• doc/pdf/manuals: this manual

• lib/aarch64-linux: the HALCON libraries for platforms based on AArch64

• lib/armv7a-linux: the HALCON libraries for platforms based on Armv7-A

• examples/arm-linux: the examples for HALCON for Arm-based platforms

G
et

tin
g

S
ta

rt
ed

10 Getting Started

2.1.2 Installing HALCON on the Arm-based Platform

The runtime installer for Arm-based platforms is available as part of the full installation archive (in the subdirectory
misc/linux) or as a separate download. The installation process is the same as with the full version: Extract the
archive on the Arm-based platform and run the installation script install-linux.sh. Again, see the Installation
Guide, section 2.2.1.2 on page 16 for more information on the installation procedure.

In order to use HALCON on the Arm-based platform, the following environment variables must be set in order for
HALCON to work:

• HALCONROOT=<directory you installed HALCON in, e.g., /opt/halcon>

• HALCONARCH=aarch64-linux or HALCONARCH=armv7a-linux

• LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${HALCONROOT}/lib/${HALCONARCH}

• PATH: this system variable should include $HALCONROOT/bin/$HALCONARCH.

2.2 Licensing

To use HALCON for Arm-based platforms you need two licenses:

• For the development version on the development PC you need a HALCON development license (see Instal-
lation Guide, section 5.3 on page 27).

• For HALCON on the Arm-based platform, you need a HALCON run-time license (see Installation Guide,
section 5.4 on page 28). If you choose to use a CID bound license, you can query the available CID id nodes
by calling hhostid -i.

2.2.1 Installing the License on the Arm-based Platform

If you installed HALCON for Arm-based platforms yourself and obtained the license file separately from your
distributor, you must rename it to license.dat (or similar, see the Installation Guide, section 1.6 on page 14 for
the naming conventions) and place it in the subdirectory license of the directory where you installed HALCON
on the Arm-based platform ($HALCONROOT).

2.3 Uninstalling HALCON

HALCON provides no uninstallation script for Linux systems, therefore you must perform the uninstallation man-
ually. Please see the Installation Guide, section 3.2 on page 22 for the specific steps.

Creating Applications 11

Chapter 3

Creating Applications

This chapter explains how to create applications for Arm-based platforms using HALCON.

There are the following ways of developing:

• developing in HDevelop, exporting the script or procedures to C, C++ or C#, and including the code in your
application (see section 3.2 on page 13)

• using HDevEngine (see section 3.7 on page 15)

• using HALCON/.NET (see section 3.5 on page 14)

• programming in Python (see section 3.6 on page 15)

• programming in C or C++ (see section 3.4 on page 14, section 3.3 on page 14)

Note that you develop the application on the development PC, not on the Arm-based platform, using the gcc
compiler to create the executable.

3.1 Configuration Files and Directory Structure

The directory $HALCONROOT/examples/arm-linux on your development PC contains sample code to build a
simple HALCON application using C and C++. Also, sample code for a program that can execute HDevelop
scripts using HDevEngine is included.

In order to build the samples, two options are at your disposal.

3.1.1 Cross-Compile

In this section we describe the steps necessary to compile an example on a development PC in order to run on
Arm-based platforms (’cross-compilation’). We will do this with the aid of the datacode example, for which also
the exported C and C++ code is included in the example directory.

We assume HALCON is installed on your development PC (and the aarch64-linux or armv7a-linux libraries have
been installed during the installation).

First the steps needed on your development PC. They are done the easiest under a Debian or Ubuntu distribution
and in the following we will assume you are using such a system.

1. Make sure you have the cross-compilation toolchain installed. If this is not the case, you can install it via
the package streams:

For aarch64-linux:

sudo apt-get install gcc-aarch64-linux-gnu

sudo apt-get install g++-aarch64-linux-gnu

A
pp

lic
at

io
ns

12 Creating Applications

For armv7a-linux:

sudo apt-get install gcc-arm-linux-gnueabihf

sudo apt-get install g++-arm-linux-gnueabihf

2. Change to your HALCON installation directory.

3. Set the HALCON environment variables, e.g., by typing

source .profile_halcon

4. Specify the HALCON target architecture (your Arm-based platform). For this, you have two options:

(a) Re-set HALCONARCH to the one of your Arm-based platform by typing

export HALCONARCH=aarch64-linux

or

export HALCONARCH=armv7a-linux

(b) Provide the HALCONARCH an argument HALCON_ARCHITECTURE to CMake.

5. Change to the application directory, in our case $HALCONROOT/examples/arm-linux.

6. Create a new build directory for your compiled example and move into it.

mkdir build

cd build

7. Specify a toolchain to CMake. For the HALCON architectures armv7a-linux and aarch64-linux, you can
find example toolchain files in $HALCONEXAMPLES/cmake/toolchains/

8. Compile the application by typing:

For aarch64-linux:

cmake .. \

-DHALCON_ARCHITECTURE=aarch64-linux \

-DCMAKE_TOOLCHAIN_FILE=../../cmake/toolchains/cross-aarch64-linux-gnu.cmake

cmake --build .

For armv7a-linux:

cmake .. \

-DHALCON_ARCHITECTURE=armv7a-linux \

-DCMAKE_TOOLCHAIN_FILE=../../examples/cmake/toolchains/cross-arm-linux-gnueabihf.cmake

cmake --build .

9. Copy the compiled files onto your Arm-based platform (the files are in ./bin/aarch64-linux or
./bin/armv7a-linux/).

10. The datacode example uses images, therefore the image sequence file $HALCON-

ROOT/examples/images/datacode/ecc200/ecc200_cpu.seq and all images referenced by it
must be in a location readable on the Arm-based platform. The easiest way is to copy the directory
$HALCONROOT/examples/images/datacode/ecc200 to your Arm-based platform.

Now, on your Arm-based platform:

1. Change to your runtime installation directory.

2. Set the necessary HALCON environment variables HALCONROOT, LD_LIBRARY_PATH (e.g., by source

.profile_halcon), and if images are used, HALCONIMAGES.

3. Execute the program which you have copied from the development PC, e.g., datacode_cpp.

3.2 Developing in HDevelop 13

3.1.2 Compile and Run on a Native Machine

In this subsection we describe how you can compile the exported C and C++ code using the compiler of your
Arm-based platform. We will do this with the aid of the datacode example.

For this, you will need to install HALCON differently on your Arm-based platform:

1. Install HALCON using the MVTec Software Manager on your Arm-based platform. Select at least the
components Runtime files and Runtime files (general).

Be aware, such an installation does not contain header files, CMake scripts, and example source code. They
have to be copied from a full HALCON installation.

2. Install further required components. On your Linux PC, create an archive of the required directories:

cd $HALCONROOT

tar -cf dev-files.tar include/examples/cmake examples/arm-linux

Copy this archive to your Arm-based platform and extract the archive in your HALCON installation

cd $HALCONROOT

tar -xf dev-files.tar

Now the Arm-based platform is set up and we can compile the code. Therefore, execute the following steps on
your Arm-based platform:

1. Change to the directory $HALCONROOT/examples/arm-linux.

2. Set a required environment variable:

export HALCONEXAMPLES=$HALCONROOT/examples

3. Create a new build directory for your compiled example and move into it.

mkdir build

cd build

4. Compile the application by typing:

cmake ..

cmake --build .

Note, that for native compilation it is not necessary to provide CMake arguments for the HALCON archi-
tecture and the toolchain.

In order that make does not attempt to run HDevelop, the date of the C file datacode.c and the C++ file
datacode_cpp.cpp must be newer than the corresponding HDevelop file datacode.hdev.

In order to execute the program, carry out the following steps:

1. Set the environment variable HALCONIMAGES appropriately.

2. Execute the program, e.g., datacode_cpp.

3. You can also execute the example with hrun.

3.2 Developing in HDevelop

If you use HDevelop to develop your application, you have to use HDevelop on your development PC. For your
final application, you then integrate your HDevelop script into a C, C++, .NET Core, or Python application.

For this, there are two alternatives:

A
pp

lic
at

io
ns

14 Creating Applications

• You can export the complete script or individual procedures to C, C++, or C# and integrate the relevant parts
of the exported code. To export an HDevelop script or procedure, open the menu item File . Export and
then select the C, C++, or C# language in the combo box. Detailed information can be found in the HDevelop
User’s Guide. Note that exporting a library project or entire HDevelop program to the Python programming
language is currently not supported.

• You can call the complete script or individual procedures from a C++, C#, or Python application using
HDevEngine (see section 3.7 on page 15, Programmer’s Guide, section 23.2.1 on page 149, or Programmer’s
Guide, section 24.1.1 on page 173, respectively).

Both methods have their advantages and disadvantages. Using HDevEngine is more comfortable, especially if you
develop the complete image processing part in HDevelop and keep the interface to the rest of the application as
small as possible. As a second advantage, you can modify the HDevelop script without needing to re-compile and
link the application (if you don’t change the interface). However, the application may run slightly slower because
the HDevelop script is interpreted by HDevEngine.

For a quick start with HDevelop please refer to the Quick Guide, for detailed information to the HDevelop User’s
Guide.

3.3 Creating C++ Applications

Detailed information about HALCON’s C++ interface can be found in the Programmer’s Guide. To summarize
the necessary extensions to the normal application development on your Arm-based platform, you

• include the main header file in your application and add the namespace:

#include "HalconCpp.h"

using namespace HalconCpp;

• compile the application with the include paths

-I$(HALCONROOT)/include -I$(HALCONROOT)/include/halconcpp

• and link the HALCON libraries for the aarch64-linux or armv7a-linux architecture

-L$(HALCONROOT)/lib/$(HALCONARCH) -lhalconcpp -lhalcon

3.4 Creating C Applications

Detailed information about HALCON’s C interface can be found in the Programmer’s Guide. To summarize the
necessary extensions to the normal application development on your Arm-based platform, you

• include the main header file in your application:

#include "HalconC.h"

• compile the application with the include paths

-I$(HALCONROOT)/include

• and link the HALCON libraries for the aarch64-linux or armv7a-linux architecture

-L$(HALCONROOT)/lib/$(HALCONARCH) -lhalconc -lhalcon

3.5 Creating C# Applications

Detailed information about HALCON/.NET interface can be found in the Programmer’s Guide. Furthermore,
make sure that you have installed the .NET Core SDK for your system architecture. To summarize the necessary
extensions to the normal application development on your Arm-based platform, you

3.6 Creating Python Applications 15

• add the namespace:

using HalconDotNet;

• and add the MVTec.HalconDotNet NuGet package to your application:

dotnet add package MVTec.HalconDotNet -v 23050

How to create a simple HALCON application with .NET Core is demonstrated in Programmer’s Guide, section 9.1
on page 60.

3.6 Creating Python Applications

Detailed information about HALCON’s Python interface can be found in the Programmer’s Guide. To try out the
Python interface, make sure that the CPython implementation of the Python programming language is installed
on the system. To summarize the necessary extensions to the normal application development on your Arm-based
platform, you

• import the HALCON/Python module:

import halcon as ha

• add HALCON/Python to your project:

pip install mvtec-halcon==23050

How to create a simple HALCON application with HALCON/Python is demonstrated in Programmer’s Guide,
chapter 14 on page 91.

3.7 Using HDevEngine

With HDevEngine, you can load and run complete HDevelop scripts or individual procedures from your C++
application.

Detailed information about HDevEngine can be found in the Programmer’s Guide. To summarize the compilation
and linking process, you

• include the main header file for HALCON and HDevEngine in your application and add the namespace:

#include "HalconCpp.h"

#include "HDevEngineCpp.h"

using namespace HalconCpp;

using namespace HDevEngineCpp;

• compile the application with the include paths

-I$(HALCONROOT)/include -I$(HALCONROOT)/include/halconcpp \

-I$(HALCONROOT)/include/hdevengine

• and link the HALCON libraries and the HDevEngine library for the aarch64-linux or armv7a-linux architec-
ture

-L$(HALCONROOT)/lib/$(HALCONARCH) -lhdevenginecpp -lhalconcpp -lhalcon

A
pp

lic
at

io
ns

	1 Using HALCON on Arm-based Platforms
	1.1 Requirements
	1.2 Limitations
	1.3 Differences to Other Platforms
	1.4 How to Develop HALCON Applications for Arm-based Platforms
	1.5 Where to Find Further Information

	2 Getting Started
	2.1 Installing the Necessary Components
	2.1.1 Installing HALCON on the Development PC Running Under Linux
	2.1.2 Installing HALCON on the Arm-based Platform

	2.2 Licensing
	2.2.1 Installing the License on the Arm-based Platform

	2.3 Uninstalling HALCON

	3 Creating Applications
	3.1 Configuration Files and Directory Structure
	3.1.1 Cross-Compile
	3.1.2 Compile and Run on a Native Machine

	3.2 Developing in HDevelop
	3.3 Creating C++ Applications
	3.4 Creating C Applications
	3.5 Creating C# Applications
	3.6 Creating Python Applications
	3.7 Using HDevEngine

