train_variation_modelT_train_variation_modelTrainVariationModelTrainVariationModeltrain_variation_model (算子)

名称

train_variation_modelT_train_variation_modelTrainVariationModelTrainVariationModeltrain_variation_model — 训练变体模型。

签名

train_variation_model(Images : : ModelID : )

Herror T_train_variation_model(const Hobject Images, const Htuple ModelID)

void TrainVariationModel(const HObject& Images, const HTuple& ModelID)

void HVariationModel::TrainVariationModel(const HImage& Images) const

void HImage::TrainVariationModel(const HVariationModel& ModelID) const

static void HOperatorSet.TrainVariationModel(HObject images, HTuple modelID)

void HVariationModel.TrainVariationModel(HImage images)

void HImage.TrainVariationModel(HVariationModel modelID)

def train_variation_model(images: HObject, model_id: HHandle) -> None

描述

train_variation_modeltrain_variation_modelTrainVariationModelTrainVariationModelTrainVariationModeltrain_variation_model trains the variation model that is passed in ModelIDModelIDModelIDModelIDmodelIDmodel_id with one or more images, which are passed in ImagesImagesImagesImagesimagesimages

As described for create_variation_modelcreate_variation_modelCreateVariationModelCreateVariationModelCreateVariationModelcreate_variation_model, a variation model that has been created using the mode 'standard'"standard""standard""standard""standard""standard" can be trained iteratively, i.e., as soon as images of good objects become available, they can be trained with train_variation_modeltrain_variation_modelTrainVariationModelTrainVariationModelTrainVariationModeltrain_variation_model. The ideal image of the object is computed as the mean of all previous training images and the images that are passed in ImagesImagesImagesImagesimagesimages. The corresponding variation image is computed as the standard deviation of the training images and the images that are passed in ImagesImagesImagesImagesimagesimages

If the variation model has been created using the mode 'robust'"robust""robust""robust""robust""robust", the model cannot be trained iteratively, i.e., all training images must be accumulated using concat_objconcat_objConcatObjConcatObjConcatObjconcat_obj and be trained with train_variation_modeltrain_variation_modelTrainVariationModelTrainVariationModelTrainVariationModeltrain_variation_model in a single call. If any images have been trained previously, the training information of the previous call is discarded. The image of the ideal object is computed as the median of all training images passed in ImagesImagesImagesImagesimagesimages. The corresponding variation image is computed as a suitably scaled median absolute deviation of the training images and the median image.

注意

At most 65535 training images can be trained.

执行信息

此算子修改后续输入参数的状态:

在执行此算子时,若该参数值需在多个线程间使用,则必须对其访问进行同步。

参数

ImagesImagesImagesImagesimagesimages (输入对象)  singlechannelimage(-array) objectHImageHObjectHImageHobject (byte / int2 / uint2)

Images of the object to be trained.

ModelIDModelIDModelIDModelIDmodelIDmodel_id (输入控制,状态被修改)  variation_model HVariationModel, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

ID of the variation model.

示例(HDevelop)

create_variation_model (Width, Height, Type, 'standard', ModelID)
for K := 1 to 10 by 1
    read_image (Image, 'pen-' + K$'02')
    find_generic_shape_model (Image, TemplateID, MatchResultID, \
                              NumMatchResult)
    get_generic_shape_model_result (MatchResultID, 'all', 'hom_mat_2d', \
                                    HomMat2D)
    if (NumMatchResult == 1)
        affine_trans_image (Image, ImageTrans, HomMat2D, 'constant', \
                            'false')
        train_variation_model (ImageTrans, ModelID)
    endif
endfor
prepare_variation_model (ModelID, 10, 4)

结果

train_variation_modeltrain_variation_modelTrainVariationModelTrainVariationModelTrainVariationModeltrain_variation_model 在所有参数正确时返回 2 ( H_MSG_TRUE )。

可能的前趋

create_variation_modelcreate_variation_modelCreateVariationModelCreateVariationModelCreateVariationModelcreate_variation_model, find_generic_shape_modelfind_generic_shape_modelFindGenericShapeModelFindGenericShapeModelFindGenericShapeModelfind_generic_shape_model, affine_trans_imageaffine_trans_imageAffineTransImageAffineTransImageAffineTransImageaffine_trans_image, concat_objconcat_objConcatObjConcatObjConcatObjconcat_obj

可能的后继

prepare_variation_modelprepare_variation_modelPrepareVariationModelPrepareVariationModelPrepareVariationModelprepare_variation_model

另见

prepare_variation_modelprepare_variation_modelPrepareVariationModelPrepareVariationModelPrepareVariationModelprepare_variation_model, compare_variation_modelcompare_variation_modelCompareVariationModelCompareVariationModelCompareVariationModelcompare_variation_model, compare_ext_variation_modelcompare_ext_variation_modelCompareExtVariationModelCompareExtVariationModelCompareExtVariationModelcompare_ext_variation_model, clear_variation_modelclear_variation_modelClearVariationModelClearVariationModelClearVariationModelclear_variation_model

模块

匹配