set_dl_model_paramT_set_dl_model_paramSetDlModelParamSetDlModelParamset_dl_model_param (算子)
名称
set_dl_model_paramT_set_dl_model_paramSetDlModelParamSetDlModelParamset_dl_model_param — 设置深度学习模型的参数。
签名
描述
set_dl_model_paramset_dl_model_paramSetDlModelParamSetDlModelParamSetDlModelParamset_dl_model_param sets the parameters and hyperparameters
GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name of the deep learning model DLModelHandleDLModelHandleDLModelHandleDLModelHandleDLModelHandledlmodel_handle
to the values GenParamValueGenParamValueGenParamValueGenParamValuegenParamValuegen_param_value.
The values GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name can attain, depend on the model type:
There are parameters which can be set for any deep learning model while
others can only be set for specific model types.
A description of the parameters whose value you can only set but not
retrieve is given below. For all other parameters the specific description
is given in get_dl_model_paramget_dl_model_paramGetDlModelParamGetDlModelParamGetDlModelParamget_dl_model_param.
In get_dl_model_paramget_dl_model_paramGetDlModelParamGetDlModelParamGetDlModelParamget_dl_model_param we also give an overview,
for which type of model and using which operator a parameter can be set.
In the following we list the parameters GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name you can set
using this operator, set_dl_model_paramset_dl_model_paramSetDlModelParamSetDlModelParamSetDlModelParamset_dl_model_param.
Thereby, the following symbols denote the model type for which the parameter
can be set and has a possible influence:
-
'Any': any method
-
'3D-GPD': 'type'"type""type""type""type""type"='3d_gripping_point_detection'"3d_gripping_point_detection""3d_gripping_point_detection""3d_gripping_point_detection""3d_gripping_point_detection""3d_gripping_point_detection"
-
'AD': 'type'"type""type""type""type""type"='anomaly_detection'"anomaly_detection""anomaly_detection""anomaly_detection""anomaly_detection""anomaly_detection"
-
'CL': 'type'"type""type""type""type""type"='classification'"classification""classification""classification""classification""classification"
-
'DC': 'type'"type""type""type""type""type"='counting'"counting""counting""counting""counting""counting"
-
'OCR-D': 'type'"type""type""type""type""type"='ocr_detection'"ocr_detection""ocr_detection""ocr_detection""ocr_detection""ocr_detection"
-
'OCR-R': 'type'"type""type""type""type""type"='ocr_recognition'"ocr_recognition""ocr_recognition""ocr_recognition""ocr_recognition""ocr_recognition"
-
'GC-AD': 'type'"type""type""type""type""type"='gc_anomaly_detection'"gc_anomaly_detection""gc_anomaly_detection""gc_anomaly_detection""gc_anomaly_detection""gc_anomaly_detection"
-
'OD': 'type'"type""type""type""type""type"='detection'"detection""detection""detection""detection""detection"
-
'SE': 'type'"type""type""type""type""type"='segmentation'"segmentation""segmentation""segmentation""segmentation""segmentation"
-
'Gen': 'type'"type""type""type""type""type"='generic'"generic""generic""generic""generic""generic"
- 'adam_beta1'"adam_beta1""adam_beta1""adam_beta1""adam_beta1""adam_beta1": 3D-GPD CL OCR-D OCR-R GC-AD OD SE Gen
Moment for linear term in Adam solver. Only applicable if
'solver_type'"solver_type""solver_type""solver_type""solver_type""solver_type" = 'adam'"adam""adam""adam""adam""adam".
- 'adam_beta2'"adam_beta2""adam_beta2""adam_beta2""adam_beta2""adam_beta2": 3D-GPD CL OCR-D OCR-R GC-AD OD SE Gen
Moment for quadratic term in Adam solver. Only applicable if
'solver_type'"solver_type""solver_type""solver_type""solver_type""solver_type" = 'adam'"adam""adam""adam""adam""adam".
- 'adam_epsilon'"adam_epsilon""adam_epsilon""adam_epsilon""adam_epsilon""adam_epsilon": 3D-GPD CL OCR-D OCR-R GC-AD OD SE Gen
Epsilon for numeric stability in Adam solver. Only applicable if
'solver_type'"solver_type""solver_type""solver_type""solver_type""solver_type" = 'adam'"adam""adam""adam""adam""adam".
- 'alphabet'"alphabet""alphabet""alphabet""alphabet""alphabet": OCR-R
-
- 'alphabet_internal'"alphabet_internal""alphabet_internal""alphabet_internal""alphabet_internal""alphabet_internal": OCR-R
-
- 'alphabet_mapping'"alphabet_mapping""alphabet_mapping""alphabet_mapping""alphabet_mapping""alphabet_mapping": OCR-R
-
- 'anomaly_score_tolerance'"anomaly_score_tolerance""anomaly_score_tolerance""anomaly_score_tolerance""anomaly_score_tolerance""anomaly_score_tolerance": GC-AD
-
- 'backbone_docking_layers'"backbone_docking_layers""backbone_docking_layers""backbone_docking_layers""backbone_docking_layers""backbone_docking_layers": CL
The docking layers can be specified for every classifier, also without
using them as backbone.
The specification is only considered for object detection backbones.
- 'batch_size'"batch_size""batch_size""batch_size""batch_size""batch_size": Any
-
- 'batch_size_multiplier'"batch_size_multiplier""batch_size_multiplier""batch_size_multiplier""batch_size_multiplier""batch_size_multiplier": 3D-GPD CL OCR-D OCR-R GC-AD OD SE Gen
-
- 'batchnorm_momentum'"batchnorm_momentum""batchnorm_momentum""batchnorm_momentum""batchnorm_momentum""batchnorm_momentum": Any except DC
-
Calling this option sets the momentum of all batch normalization layers
within the network. The settable values are the same as described in
create_dl_layer_batch_normalizationcreate_dl_layer_batch_normalizationCreateDlLayerBatchNormalizationCreateDlLayerBatchNormalizationCreateDlLayerBatchNormalizationcreate_dl_layer_batch_normalization for the parameter
MomentumMomentumMomentumMomentummomentummomentum.
Note, if the network has no such layer, nothing is done and therewith
the operation is regarded as successful.
- 'bbox_heads_weight'"bbox_heads_weight""bbox_heads_weight""bbox_heads_weight""bbox_heads_weight""bbox_heads_weight", 'class_heads_weight'"class_heads_weight""class_heads_weight""class_heads_weight""class_heads_weight""class_heads_weight": OD
-
- 'class_ids'"class_ids""class_ids""class_ids""class_ids""class_ids": 3D-GPD OD SE
-
- 'class_names'"class_names""class_names""class_names""class_names""class_names": CL OD SE
-
- 'class_weights'"class_weights""class_weights""class_weights""class_weights""class_weights": CL
-
- 'complexity'"complexity""complexity""complexity""complexity""complexity": AD
-
- 'device'"device""device""device""device""device": Any
-
- 'enable_resizing'"enable_resizing""enable_resizing""enable_resizing""enable_resizing""enable_resizing": Any except DC
-
Calling this option converts certain pooling layers within the
network. More precisely, every non-global pooling layer with a
resulting feature map of size 1x1 is converted into a global pooling
layer. This means, a pooling layer performing e.g., average pooling is
converted into one performing global average pooling.
For more information about pooling layer and possible modes of operation,
see the “Solution Guide on Classification”.
Note, if this operation is performed, it can not be undone.
Accordingly, you can only call it with the value 'true'"true""true""true""true""true".
Also, if the network has no such layer, nothing is done and therewith
the operation is regarded as successful.
- 'extract_feature_maps'"extract_feature_maps""extract_feature_maps""extract_feature_maps""extract_feature_maps""extract_feature_maps": CL
-
- 'freeze_backbone_level'"freeze_backbone_level""freeze_backbone_level""freeze_backbone_level""freeze_backbone_level""freeze_backbone_level": OD
-
- 'fuse_bn_relu'"fuse_bn_relu""fuse_bn_relu""fuse_bn_relu""fuse_bn_relu""fuse_bn_relu": Any except DC
-
Calling this option, fuses layer pairs consisting of a batch normalization
layer without activation and a directly connected activation layer
with ReLU activation.
In order to so do, the output of the batch normalization layer is only used
as input for the activation layer.
As a result a batch normalization layer with activation mode ReLU is obtained.
For more information about layers and possible modes of operation,
see the “Solution Guide on Classification”.
Note, if this operation is performed, it can not be undone.
Accordingly, you can only call it with the value 'true'"true""true""true""true""true".
Also, if the network has no such fusible layers, nothing is done and
therewith the operation is regarded as successful.
Restriction: Leaky ReLU layers cannot be fused with
batch normalization layers.
- 'fuse_conv_relu'"fuse_conv_relu""fuse_conv_relu""fuse_conv_relu""fuse_conv_relu""fuse_conv_relu": Any except DC
-
Calling this option, fuses layer pairs consisting of a convolution
layer without activation and a directly connected activation layer
with ReLU activation.
In order to so do, the output of the convolution layer is only used
as input for the activation layer.
As a result a convolution layer with activation mode ReLU is obtained.
For more information about layers and possible modes of operation,
see the “Solution Guide on Classification”.
Note, if this operation is performed, it can not be undone.
Accordingly, you can only call it with the value 'true'"true""true""true""true""true".
Also, if the network has no such fusible layers, nothing is done and
therewith the operation is regarded as successful.
Restriction: Leaky ReLU layers cannot be fused with
convolution layers.
- 'gc_anomaly_networks'"gc_anomaly_networks""gc_anomaly_networks""gc_anomaly_networks""gc_anomaly_networks""gc_anomaly_networks": GC-AD
-
- 'gpu'"gpu""gpu""gpu""gpu""gpu": Any
-
- 'ignore_class_ids'"ignore_class_ids""ignore_class_ids""ignore_class_ids""ignore_class_ids""ignore_class_ids": SE
-
- 'image_dimensions'"image_dimensions""image_dimensions""image_dimensions""image_dimensions""image_dimensions": 3D-GPD AD CL OCR-D OCR-R GC-AD SE
-
- 'image_height'"image_height""image_height""image_height""image_height""image_height", 'image_width'"image_width""image_width""image_width""image_width""image_width": 3D-GPD AD CL OCR-D OCR-R GC-AD SE
-
- 'image_num_channels'"image_num_channels""image_num_channels""image_num_channels""image_num_channels""image_num_channels": AD CL OCR-D OCR-R GC-AD SE
-
- 'image_range_max'"image_range_max""image_range_max""image_range_max""image_range_max""image_range_max", 'image_range_min'"image_range_min""image_range_min""image_range_min""image_range_min""image_range_min": 3D-GPD OCR-D OCR-R SE
-
- 'image_size'"image_size""image_size""image_size""image_size""image_size": 3D-GPD AD CL OCR-D OCR-R GC-AD SE
-
- 'input_dimensions'"input_dimensions""input_dimensions""input_dimensions""input_dimensions""input_dimensions": AD CL OCR-D OCR-R SE Gen
-
- 'learning_rate'"learning_rate""learning_rate""learning_rate""learning_rate""learning_rate": 3D-GPD CL OCR-D OCR-R GC-AD OD SE Gen
-
- 'mask_head_weight'"mask_head_weight""mask_head_weight""mask_head_weight""mask_head_weight""mask_head_weight": OD
This parameter is only available for models with
'instance_segmentation'"instance_segmentation""instance_segmentation""instance_segmentation""instance_segmentation""instance_segmentation"='true'"true""true""true""true""true".
- 'max_num_detections'"max_num_detections""max_num_detections""max_num_detections""max_num_detections""max_num_detections": OD
-
- 'max_overlap'"max_overlap""max_overlap""max_overlap""max_overlap""max_overlap": OD
-
- 'max_overlap_class_agnostic'"max_overlap_class_agnostic""max_overlap_class_agnostic""max_overlap_class_agnostic""max_overlap_class_agnostic""max_overlap_class_agnostic": OD
-
- 'meta_data'"meta_data""meta_data""meta_data""meta_data""meta_data": Any
-
- 'min_character_score'"min_character_score""min_character_score""min_character_score""min_character_score""min_character_score": OCR-D
-
- 'min_confidence'"min_confidence""min_confidence""min_confidence""min_confidence""min_confidence": OD
-
- 'min_link_score'"min_link_score""min_link_score""min_link_score""min_link_score""min_link_score": OCR-D
-
- 'min_word_area'"min_word_area""min_word_area""min_word_area""min_word_area""min_word_area": OCR-D
-
- 'min_word_score'"min_word_score""min_word_score""min_word_score""min_word_score""min_word_score": OCR-D
-
- 'momentum'"momentum""momentum""momentum""momentum""momentum": 3D-GPD CL OCR-D OCR-R GC-AD OD SE Gen
-
Momentum for SGD solver.
Restriction: Only applicable for 'solver_type'"solver_type""solver_type""solver_type""solver_type""solver_type" =
'sgd'"sgd""sgd""sgd""sgd""sgd".
- 'optimize_for_inference'"optimize_for_inference""optimize_for_inference""optimize_for_inference""optimize_for_inference""optimize_for_inference": 3D-GPD CL OCR-D OCR-R GC-AD OD SE Gen
-
- 'orientation'"orientation""orientation""orientation""orientation""orientation": OCR-D
-
- 'patch_size'"patch_size""patch_size""patch_size""patch_size""patch_size": GC-AD
-
- 'runtime'"runtime""runtime""runtime""runtime""runtime": Any
-
- 'runtime_init'"runtime_init""runtime_init""runtime_init""runtime_init""runtime_init": Any except DC
-
If called with 'immediately'"immediately""immediately""immediately""immediately""immediately", the GPU memory is initialized
and the corresponding handle created. Otherwise this is done on
demand, which may result in significantly larger execution times for
the first call of apply_dl_modelapply_dl_modelApplyDlModelApplyDlModelApplyDlModelapply_dl_model or
train_dl_model_batchtrain_dl_model_batchTrainDlModelBatchTrainDlModelBatchTrainDlModelBatchtrain_dl_model_batch.
If the network architecture is changed subsequently, the GPU memory
is reinitialized.
This can happen e.g., for changes of 'batch_size'"batch_size""batch_size""batch_size""batch_size""batch_size",
'image_dimensions'"image_dimensions""image_dimensions""image_dimensions""image_dimensions""image_dimensions" or 'input_dimensions'"input_dimensions""input_dimensions""input_dimensions""input_dimensions""input_dimensions" with
subsequent calls of set_dl_model_paramset_dl_model_paramSetDlModelParamSetDlModelParamSetDlModelParamset_dl_model_param.
Note, this parameter has no effect if:
-
Running on CPUs, thus if 'runtime'"runtime""runtime""runtime""runtime""runtime" is set to 'cpu'"cpu""cpu""cpu""cpu""cpu".
-
Running with an AI
2-interface.
-
The device has been set before using 'device'"device""device""device""device""device".
- 'solver_type'"solver_type""solver_type""solver_type""solver_type""solver_type": 3D-GPD CL OCR-D OCR-R GC-AD OD SE Gen
-
- 'sort_by_line'"sort_by_line""sort_by_line""sort_by_line""sort_by_line""sort_by_line": OCR-D
-
- 'standard_deviation_factor'"standard_deviation_factor""standard_deviation_factor""standard_deviation_factor""standard_deviation_factor""standard_deviation_factor": AD
-
- 'tiling'"tiling""tiling""tiling""tiling""tiling": OCR-D
-
- 'tiling_overlap'"tiling_overlap""tiling_overlap""tiling_overlap""tiling_overlap""tiling_overlap": OCR-D
-
- 'type'"type""type""type""type""type": Gen
-
This parameter returns the HALCON-specific model type.
Models of 'generic'"generic""generic""generic""generic""generic" fulfill all model functions. But several
deep learning procedures rely a specific 'type'"type""type""type""type""type".
The value of 'type'"type""type""type""type""type" can be set from 'generic'"generic""generic""generic""generic""generic" to the
following values:
Setting a value for 'type'"type""type""type""type""type" to model it is checked if it has all
layers necessary for inference and training. In case such layers are
missing, they are added.
- 'weight_prior'"weight_prior""weight_prior""weight_prior""weight_prior""weight_prior": 3D-GPD CL OCR-D OCR-R GC-AD OD SE Gen
-
注意
System requirements:
To successfully set 'gpu'"gpu""gpu""gpu""gpu""gpu" parameters, cuDNN and cuBLAS are
required, i.e., to set the parameter GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name
'runtime'"runtime""runtime""runtime""runtime""runtime" to 'gpu'"gpu""gpu""gpu""gpu""gpu".
For further details, please refer to the “Installation Guide”,
paragraph “Requirements for Deep Learning and Deep-Learning-Based Methods”.
执行信息
- 多线程类型:可重入(与非独占算子并行运行)。
- 多线程作用域:全局(可从任何线程调用)。
- 未采用并行化处理。
参数
DLModelHandleDLModelHandleDLModelHandleDLModelHandleDLModelHandledlmodel_handle (输入控制) dl_model → HDlModel, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)
Handle of the deep learning model.
GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name (输入控制) attribute.name → HTuplestrHTupleHtuple (string) (string) (HString) (char*)
Name of the generic parameter.
默认值:
'batch_size'
"batch_size"
"batch_size"
"batch_size"
"batch_size"
"batch_size"
值列表:
'adam_beta1'"adam_beta1""adam_beta1""adam_beta1""adam_beta1""adam_beta1", 'adam_beta2'"adam_beta2""adam_beta2""adam_beta2""adam_beta2""adam_beta2", 'adam_epsilon'"adam_epsilon""adam_epsilon""adam_epsilon""adam_epsilon""adam_epsilon", 'alphabet'"alphabet""alphabet""alphabet""alphabet""alphabet", 'alphabet_internal'"alphabet_internal""alphabet_internal""alphabet_internal""alphabet_internal""alphabet_internal", 'alphabet_mapping'"alphabet_mapping""alphabet_mapping""alphabet_mapping""alphabet_mapping""alphabet_mapping", 'anchor_angles'"anchor_angles""anchor_angles""anchor_angles""anchor_angles""anchor_angles", 'anchor_aspect_ratios'"anchor_aspect_ratios""anchor_aspect_ratios""anchor_aspect_ratios""anchor_aspect_ratios""anchor_aspect_ratios", 'anchor_num_subscales'"anchor_num_subscales""anchor_num_subscales""anchor_num_subscales""anchor_num_subscales""anchor_num_subscales", 'anomaly_score_tolerance'"anomaly_score_tolerance""anomaly_score_tolerance""anomaly_score_tolerance""anomaly_score_tolerance""anomaly_score_tolerance", 'backbone'"backbone""backbone""backbone""backbone""backbone", 'backbone_docking_layers'"backbone_docking_layers""backbone_docking_layers""backbone_docking_layers""backbone_docking_layers""backbone_docking_layers", 'batch_size'"batch_size""batch_size""batch_size""batch_size""batch_size", 'batch_size_multiplier'"batch_size_multiplier""batch_size_multiplier""batch_size_multiplier""batch_size_multiplier""batch_size_multiplier", 'batchnorm_momentum'"batchnorm_momentum""batchnorm_momentum""batchnorm_momentum""batchnorm_momentum""batchnorm_momentum", 'bbox_heads_weight'"bbox_heads_weight""bbox_heads_weight""bbox_heads_weight""bbox_heads_weight""bbox_heads_weight", 'capacity'"capacity""capacity""capacity""capacity""capacity", 'class_heads_weight'"class_heads_weight""class_heads_weight""class_heads_weight""class_heads_weight""class_heads_weight", 'class_ids'"class_ids""class_ids""class_ids""class_ids""class_ids", 'class_names'"class_names""class_names""class_names""class_names""class_names", 'class_weights'"class_weights""class_weights""class_weights""class_weights""class_weights", 'complexity'"complexity""complexity""complexity""complexity""complexity", 'device'"device""device""device""device""device", 'enable_resizing'"enable_resizing""enable_resizing""enable_resizing""enable_resizing""enable_resizing", 'extract_feature_maps'"extract_feature_maps""extract_feature_maps""extract_feature_maps""extract_feature_maps""extract_feature_maps", 'freeze_backbone_level'"freeze_backbone_level""freeze_backbone_level""freeze_backbone_level""freeze_backbone_level""freeze_backbone_level", 'fuse_bn_relu'"fuse_bn_relu""fuse_bn_relu""fuse_bn_relu""fuse_bn_relu""fuse_bn_relu", 'fuse_conv_relu'"fuse_conv_relu""fuse_conv_relu""fuse_conv_relu""fuse_conv_relu""fuse_conv_relu", 'gc_anomaly_networks'"gc_anomaly_networks""gc_anomaly_networks""gc_anomaly_networks""gc_anomaly_networks""gc_anomaly_networks", 'gpu'"gpu""gpu""gpu""gpu""gpu", 'ignore_class_ids'"ignore_class_ids""ignore_class_ids""ignore_class_ids""ignore_class_ids""ignore_class_ids", 'ignore_direction'"ignore_direction""ignore_direction""ignore_direction""ignore_direction""ignore_direction", 'image_dimensions'"image_dimensions""image_dimensions""image_dimensions""image_dimensions""image_dimensions", 'image_height'"image_height""image_height""image_height""image_height""image_height", 'image_num_channels'"image_num_channels""image_num_channels""image_num_channels""image_num_channels""image_num_channels", 'image_range_max'"image_range_max""image_range_max""image_range_max""image_range_max""image_range_max", 'image_range_min'"image_range_min""image_range_min""image_range_min""image_range_min""image_range_min", 'image_size'"image_size""image_size""image_size""image_size""image_size", 'image_width'"image_width""image_width""image_width""image_width""image_width", 'input_dimensions'"input_dimensions""input_dimensions""input_dimensions""input_dimensions""input_dimensions", 'instance_type'"instance_type""instance_type""instance_type""instance_type""instance_type", 'learning_rate'"learning_rate""learning_rate""learning_rate""learning_rate""learning_rate", 'mask_head_weight'"mask_head_weight""mask_head_weight""mask_head_weight""mask_head_weight""mask_head_weight", 'max_level'"max_level""max_level""max_level""max_level""max_level", 'max_num_detections'"max_num_detections""max_num_detections""max_num_detections""max_num_detections""max_num_detections", 'max_overlap'"max_overlap""max_overlap""max_overlap""max_overlap""max_overlap", 'max_overlap_class_agnostic'"max_overlap_class_agnostic""max_overlap_class_agnostic""max_overlap_class_agnostic""max_overlap_class_agnostic""max_overlap_class_agnostic", 'meta_data'"meta_data""meta_data""meta_data""meta_data""meta_data", 'min_character_score'"min_character_score""min_character_score""min_character_score""min_character_score""min_character_score", 'min_confidence'"min_confidence""min_confidence""min_confidence""min_confidence""min_confidence", 'min_level'"min_level""min_level""min_level""min_level""min_level", 'min_link_score'"min_link_score""min_link_score""min_link_score""min_link_score""min_link_score", 'min_word_area'"min_word_area""min_word_area""min_word_area""min_word_area""min_word_area", 'min_word_score'"min_word_score""min_word_score""min_word_score""min_word_score""min_word_score", 'momentum'"momentum""momentum""momentum""momentum""momentum", 'num_classes'"num_classes""num_classes""num_classes""num_classes""num_classes", 'optimize_for_inference'"optimize_for_inference""optimize_for_inference""optimize_for_inference""optimize_for_inference""optimize_for_inference", 'orientation'"orientation""orientation""orientation""orientation""orientation", 'patch_size'"patch_size""patch_size""patch_size""patch_size""patch_size", 'runtime'"runtime""runtime""runtime""runtime""runtime", 'runtime_init'"runtime_init""runtime_init""runtime_init""runtime_init""runtime_init", 'solver_type'"solver_type""solver_type""solver_type""solver_type""solver_type", 'sort_by_line'"sort_by_line""sort_by_line""sort_by_line""sort_by_line""sort_by_line", 'standard_deviation_factor'"standard_deviation_factor""standard_deviation_factor""standard_deviation_factor""standard_deviation_factor""standard_deviation_factor", 'summary'"summary""summary""summary""summary""summary", 'tiling'"tiling""tiling""tiling""tiling""tiling", 'tiling_overlap'"tiling_overlap""tiling_overlap""tiling_overlap""tiling_overlap""tiling_overlap", 'type'"type""type""type""type""type", 'weight_prior'"weight_prior""weight_prior""weight_prior""weight_prior""weight_prior"
GenParamValueGenParamValueGenParamValueGenParamValuegenParamValuegen_param_value (输入控制) attribute.value(-array) → HTupleMaybeSequence[Union[str, float, int]]HTupleHtuple (integer / string / real) (int / long / string / double) (Hlong / HString / double) (Hlong / char* / double)
Value of the generic parameter.
默认值:
1
建议值:
1, 2, 3, 50, [80,60], 80, 60, 0.001, -127, 128, 'adam'"adam""adam""adam""adam""adam", 'cpu'"cpu""cpu""cpu""cpu""cpu", 'gpu'"gpu""gpu""gpu""gpu""gpu", 'immediately'"immediately""immediately""immediately""immediately""immediately", 'sgd'"sgd""sgd""sgd""sgd""sgd"
结果
If the parameters are valid, the operator
set_dl_model_paramset_dl_model_paramSetDlModelParamSetDlModelParamSetDlModelParamset_dl_model_param returns the value 2 (
H_MSG_TRUE)
. If
necessary, an exception is raised.
可能的前趋
read_dl_modelread_dl_modelReadDlModelReadDlModelReadDlModelread_dl_model,
get_dl_model_paramget_dl_model_paramGetDlModelParamGetDlModelParamGetDlModelParamget_dl_model_param
可能的后继
get_dl_model_paramget_dl_model_paramGetDlModelParamGetDlModelParamGetDlModelParamget_dl_model_param,
apply_dl_modelapply_dl_modelApplyDlModelApplyDlModelApplyDlModelapply_dl_model,
train_dl_model_batchtrain_dl_model_batchTrainDlModelBatchTrainDlModelBatchTrainDlModelBatchtrain_dl_model_batch,
train_dl_model_anomaly_datasettrain_dl_model_anomaly_datasetTrainDlModelAnomalyDatasetTrainDlModelAnomalyDatasetTrainDlModelAnomalyDatasettrain_dl_model_anomaly_dataset
另见
get_dl_model_paramget_dl_model_paramGetDlModelParamGetDlModelParamGetDlModelParamget_dl_model_param
模块
基础。该算子采用动态许可机制(详见《安装指南》)。所需模块取决于算子的具体使用场景:
3D计量学、光学字符识别/光学字符验证、匹配、深度学习推理