mult_matrix — 将两个矩阵相乘。
mult_matrix( : : MatrixAID, MatrixBID, MultType : MatrixMultID)
算子 mult_matrix computes the product of the input
matrices MatrixA and MatrixB defined by the
matrix handles MatrixAID and MatrixBID. A new
matrix MatrixMult is generated with the result. The
operator returns the matrix handle MatrixMultID of the
matrix MatrixMult.可通过算子
get_full_matrix 等方式访问该矩阵的元素。If
desired, one or both input matrices will be transposed for the
multiplication.
The type of multiplication can be selected via MultType:
The matrices MatrixA
and MatrixB will not be transposed. Therefore, 结果的计算公式为:
The number of columns of the matrix MatrixA must be
identical to the number of rows of the matrix MatrixB.
示例:
The matrix MatrixA
will be transposed. The matrix MatrixB will not be
transposed. Therefore, 结果的计算公式为:
The number of rows of the matrix MatrixA must be
identical to the number of rows of the matrix MatrixB.
示例:
The matrix MatrixA
will not be transposed. The matrix MatrixB will be
transposed. Therefore, 结果的计算公式为:
The number of columns of the matrix MatrixA must be
identical to the number of columns of the matrix
MatrixB.
示例:
The matrix MatrixA
and the matrix MatrixB will be transposed. Therefore,
结果的计算公式为:
The number of rows of the matrix MatrixA must be
identical to the number of columns of the matrix
MatrixB.
示例:
MatrixAID (输入控制) matrix → (handle)
Matrix handle of the input matrix A.
MatrixBID (输入控制) matrix → (handle)
Matrix handle of the input matrix B.
MultType (输入控制) string → (string)
Type of the input matrices.
默认值: 'AB'
值列表: 'AB', 'ABT', 'ATB', 'ATBT'
MatrixMultID (输出控制) matrix → (handle)
Matrix handle of the multiplied matrices.
如果参数有效,算子 mult_matrix 返回值 2 ( H_MSG_TRUE )。如有必要,则抛出异常。
get_full_matrix,
get_value_matrix
mult_element_matrix,
mult_element_matrix_mod,
div_element_matrix,
div_element_matrix_mod,
transpose_matrix,
transpose_matrix_mod
David Poole: “Linear Algebra: A Modern Introduction”; Thomson;
Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The
Johns Hopkins University Press; Baltimore and London; 1996.
基础