get_deep_counting_model_paramT_get_deep_counting_model_paramGetDeepCountingModelParamGetDeepCountingModelParamget_deep_counting_model_param (算子)

名称

get_deep_counting_model_paramT_get_deep_counting_model_paramGetDeepCountingModelParamGetDeepCountingModelParamget_deep_counting_model_param — 返回深度计数模型的参数。

签名

get_deep_counting_model_param( : : DeepCountingHandle, GenParamName : GenParamValue)

Herror T_get_deep_counting_model_param(const Htuple DeepCountingHandle, const Htuple GenParamName, Htuple* GenParamValue)

void GetDeepCountingModelParam(const HTuple& DeepCountingHandle, const HTuple& GenParamName, HTuple* GenParamValue)

HTuple HDlModelCounting::GetDeepCountingModelParam(const HString& GenParamName) const

HTuple HDlModelCounting::GetDeepCountingModelParam(const char* GenParamName) const

HTuple HDlModelCounting::GetDeepCountingModelParam(const wchar_t* GenParamName) const   ( Windows only)

static void HOperatorSet.GetDeepCountingModelParam(HTuple deepCountingHandle, HTuple genParamName, out HTuple genParamValue)

HTuple HDlModelCounting.GetDeepCountingModelParam(string genParamName)

def get_deep_counting_model_param(deep_counting_handle: HHandle, gen_param_name: str) -> Union[str, float, int]

描述

算子 get_deep_counting_model_paramget_deep_counting_model_paramGetDeepCountingModelParamGetDeepCountingModelParamGetDeepCountingModelParamget_deep_counting_model_param returns the parameter values of GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name for the Deep Counting model DeepCountingHandleDeepCountingHandleDeepCountingHandleDeepCountingHandledeepCountingHandledeep_counting_handle in GenParamValueGenParamValueGenParamValueGenParamValuegenParamValuegen_param_value

Note that when changing parameters that influence the template creation, prepare_deep_counting_modelprepare_deep_counting_modelPrepareDeepCountingModelPrepareDeepCountingModelPrepareDeepCountingModelprepare_deep_counting_model must be called again before the model can be applied with apply_deep_counting_modelapply_deep_counting_modelApplyDeepCountingModelApplyDeepCountingModelApplyDeepCountingModelapply_deep_counting_model。The following table gives an overview, which parameters can be set using set_deep_counting_model_paramset_deep_counting_model_paramSetDeepCountingModelParamSetDeepCountingModelParamSetDeepCountingModelParamset_deep_counting_model_param or create_deep_counting_modelcreate_deep_counting_modelCreateDeepCountingModelCreateDeepCountingModelCreateDeepCountingModelcreate_deep_counting_model (set), which can be retrieved using get_deep_counting_model_paramget_deep_counting_model_paramGetDeepCountingModelParamGetDeepCountingModelParamGetDeepCountingModelParamget_deep_counting_model_param (get), and which require re-running prepare_deep_counting_modelprepare_deep_counting_modelPrepareDeepCountingModelPrepareDeepCountingModelPrepareDeepCountingModelprepare_deep_counting_model after changing them (prepare).

GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name set get Requires prepare
'angle_start'"angle_start""angle_start""angle_start""angle_start""angle_start" x x x
'angle_step'"angle_step""angle_step""angle_step""angle_step""angle_step" x x x
'angle_end'"angle_end""angle_end""angle_end""angle_end""angle_end" x x x
'backbone_model'"backbone_model""backbone_model""backbone_model""backbone_model""backbone_model" x x x
'device'"device""device""device""device""device" x x x
'max_overlap'"max_overlap""max_overlap""max_overlap""max_overlap""max_overlap" x x
'min_score'"min_score""min_score""min_score""min_score""min_score" x x
'scale_max'"scale_max""scale_max""scale_max""scale_max""scale_max" x x x
'scale_min'"scale_min""scale_min""scale_min""scale_min""scale_min" x x x
'scale_step'"scale_step""scale_step""scale_step""scale_step""scale_step" x x x

In the following the parameters are described:

'angle_start'"angle_start""angle_start""angle_start""angle_start""angle_start", 'angle_step'"angle_step""angle_step""angle_step""angle_step""angle_step", 'angle_end'"angle_end""angle_end""angle_end""angle_end""angle_end"

Control the rotational augmentation. Templates passed to prepare_deep_counting_modelprepare_deep_counting_modelPrepareDeepCountingModelPrepareDeepCountingModelPrepareDeepCountingModelprepare_deep_counting_model are rotated from 'angle_start'"angle_start""angle_start""angle_start""angle_start""angle_start" to 'angle_end'"angle_end""angle_end""angle_end""angle_end""angle_end" in steps of 'angle_step'"angle_step""angle_step""angle_step""angle_step""angle_step". This allows apply_deep_counting_modelapply_deep_counting_modelApplyDeepCountingModelApplyDeepCountingModelApplyDeepCountingModelapply_deep_counting_model to better find rotated instances of the templates.

The angles must be passed in radians.

建议值: 0, -6.28, -3.14, 3.14, 6.28

默认值: 'angle_start'"angle_start""angle_start""angle_start""angle_start""angle_start" = 0, 'angle_end'"angle_end""angle_end""angle_end""angle_end""angle_end" = 0, 'angle_step'"angle_step""angle_step""angle_step""angle_step""angle_step" = 'rad(30)'"rad(30)""rad(30)""rad(30)""rad(30)""rad(30)"

限制: <= 'angle_start'"angle_start""angle_start""angle_start""angle_start""angle_start" <= 'angle_end'"angle_end""angle_end""angle_end""angle_end""angle_end" <= , 'angle_step'"angle_step""angle_step""angle_step""angle_step""angle_step" > 0

'backbone_model'"backbone_model""backbone_model""backbone_model""backbone_model""backbone_model"

The backbone used for the detection of the templates. The backbone is automatically created by create_deep_counting_modelcreate_deep_counting_modelCreateDeepCountingModelCreateDeepCountingModelCreateDeepCountingModelcreate_deep_counting_model。It can be obtained and written back in order to, for example, optimize it using optimize_dl_model_for_inferenceoptimize_dl_model_for_inferenceOptimizeDlModelForInferenceOptimizeDlModelForInferenceOptimizeDlModelForInferenceoptimize_dl_model_for_inference

Note that the Deep Counting model will automatically set the input size of the backbone according to the template and image sizes. It has therefore no effect to change the backbone's input size, and it is not recommended to do so. Also note that the backbone can not be used for any other deep learning methods besides Deep Counting.

'device'"device""device""device""device""device"

Handle of the device on which the backbone will be executed.

If the backbone was already optimized for a device, setting 'device'"device""device""device""device""device" might not be necessary anymore, see optimize_dl_model_for_inferenceoptimize_dl_model_for_inferenceOptimizeDlModelForInferenceOptimizeDlModelForInferenceOptimizeDlModelForInferenceoptimize_dl_model_for_inference for details.

To get a tuple of handles of all available potentially deep-learning capable hardware devices use query_available_dl_devicesquery_available_dl_devicesQueryAvailableDlDevicesQueryAvailableDlDevicesQueryAvailableDlDevicesquery_available_dl_devices

默认值: Handle of the default device, thus the GPU with index 0. If not available, this is an empty tuple.

'max_overlap'"max_overlap""max_overlap""max_overlap""max_overlap""max_overlap"

The maximum allowed intersection over union (IoU) for two detected templates during counting. When two templates have an IoU higher than 'max_overlap'"max_overlap""max_overlap""max_overlap""max_overlap""max_overlap", the one with lower confidence value gets suppressed. When set to 0, no overlap at all is allowed. We refer to the chapter Deep Learning / Object Detection and Instance Segmentation for further explanations of the IoU.

建议值: 0.3, 0.5, 0.7, 1.0

默认值: 'max_overlap'"max_overlap""max_overlap""max_overlap""max_overlap""max_overlap" = 0.5

限制: 0 <= 'max_overlap'"max_overlap""max_overlap""max_overlap""max_overlap""max_overlap" <= 1

'min_score'"min_score""min_score""min_score""min_score""min_score"

This parameter determines the minimum similarity of detected instances to the original templates. In other words, apply_deep_counting_modelapply_deep_counting_modelApplyDeepCountingModelApplyDeepCountingModelApplyDeepCountingModelapply_deep_counting_model ignores all detected instances with a similarity smaller than this value. The similarity computed by the Deep Counting model lies between 0 and 1, where 0 means no similarity and 1 is a very high similarity.

建议值: 0.2, 0.3, 0.4, 0.5

默认值: 'min_score'"min_score""min_score""min_score""min_score""min_score" = 0.4

限制: 0 < 'min_score'"min_score""min_score""min_score""min_score""min_score" <= 1

'scale_min'"scale_min""scale_min""scale_min""scale_min""scale_min", 'scale_step'"scale_step""scale_step""scale_step""scale_step""scale_step", 'scale_max'"scale_max""scale_max""scale_max""scale_max""scale_max"

Control the scale augmentation. Templates passed to prepare_deep_counting_modelprepare_deep_counting_modelPrepareDeepCountingModelPrepareDeepCountingModelPrepareDeepCountingModelprepare_deep_counting_model are scaled from 'scale_min'"scale_min""scale_min""scale_min""scale_min""scale_min" to 'scale_max'"scale_max""scale_max""scale_max""scale_max""scale_max" in steps of 'scale_step'"scale_step""scale_step""scale_step""scale_step""scale_step". This allows apply_deep_counting_modelapply_deep_counting_modelApplyDeepCountingModelApplyDeepCountingModelApplyDeepCountingModelapply_deep_counting_model to better find scaled instances of the templates.

建议值: 0.9, 1.0, 1.1

默认值: 'scale_min'"scale_min""scale_min""scale_min""scale_min""scale_min" = 1.0, 'scale_max'"scale_max""scale_max""scale_max""scale_max""scale_max" = 1.0, 'scale_step'"scale_step""scale_step""scale_step""scale_step""scale_step" = 0.1

限制: 0 < 'scale_min'"scale_min""scale_min""scale_min""scale_min""scale_min" <= 'scale_max'"scale_max""scale_max""scale_max""scale_max""scale_max", 'scale_step'"scale_step""scale_step""scale_step""scale_step""scale_step" > 0

执行信息

参数

DeepCountingHandleDeepCountingHandleDeepCountingHandleDeepCountingHandledeepCountingHandledeep_counting_handle (输入控制)  deep_counting HDlModelCounting, HTupleHHandleHTupleHtuple (handle) (IntPtr) (HHandle) (handle)

深度计数模型的句柄。

GenParamNameGenParamNameGenParamNameGenParamNamegenParamNamegen_param_name (输入控制)  attribute.name HTuplestrHTupleHtuple (string) (string) (HString) (char*)

Name of the generic parameter.

默认值: 'angle_start' "angle_start" "angle_start" "angle_start" "angle_start" "angle_start"

值列表: 'angle_end'"angle_end""angle_end""angle_end""angle_end""angle_end", 'angle_start'"angle_start""angle_start""angle_start""angle_start""angle_start", 'angle_step'"angle_step""angle_step""angle_step""angle_step""angle_step", 'backbone_model'"backbone_model""backbone_model""backbone_model""backbone_model""backbone_model", 'device'"device""device""device""device""device", 'max_overlap'"max_overlap""max_overlap""max_overlap""max_overlap""max_overlap", 'min_score'"min_score""min_score""min_score""min_score""min_score", 'scale_max'"scale_max""scale_max""scale_max""scale_max""scale_max", 'scale_min'"scale_min""scale_min""scale_min""scale_min""scale_min", 'scale_step'"scale_step""scale_step""scale_step""scale_step""scale_step"

GenParamValueGenParamValueGenParamValueGenParamValuegenParamValuegen_param_value (输出控制)  attribute.name HTupleUnion[str, float, int]HTupleHtuple (real / string / integer) (double / string / int / long) (double / HString / Hlong) (double / char* / Hlong)

Value of the generic parameter.

结果

如果模型的句柄有效,算子 get_deep_counting_model_paramget_deep_counting_model_paramGetDeepCountingModelParamGetDeepCountingModelParamGetDeepCountingModelParamget_deep_counting_model_param 返回值 2 ( H_MSG_TRUE )。如有必要,则抛出异常。

可能的前趋

create_deep_counting_modelcreate_deep_counting_modelCreateDeepCountingModelCreateDeepCountingModelCreateDeepCountingModelcreate_deep_counting_model, set_deep_counting_model_paramset_deep_counting_model_paramSetDeepCountingModelParamSetDeepCountingModelParamSetDeepCountingModelParamset_deep_counting_model_param, read_deep_counting_modelread_deep_counting_modelReadDeepCountingModelReadDeepCountingModelReadDeepCountingModelread_deep_counting_model

可能的后继

apply_deep_counting_modelapply_deep_counting_modelApplyDeepCountingModelApplyDeepCountingModelApplyDeepCountingModelapply_deep_counting_model

另见

set_deep_counting_model_paramset_deep_counting_model_paramSetDeepCountingModelParamSetDeepCountingModelParamSetDeepCountingModelParamset_deep_counting_model_param

模块

匹配