get_deep_counting_model_param T_get_deep_counting_model_param GetDeepCountingModelParam GetDeepCountingModelParam get_deep_counting_model_param (算子)
名称
get_deep_counting_model_param T_get_deep_counting_model_param GetDeepCountingModelParam GetDeepCountingModelParam get_deep_counting_model_param — 返回深度计数模型的参数。
签名
描述
算子 get_deep_counting_model_param get_deep_counting_model_param GetDeepCountingModelParam GetDeepCountingModelParam GetDeepCountingModelParam get_deep_counting_model_param returns the parameter values
of GenParamName GenParamName GenParamName GenParamName genParamName gen_param_name for the Deep Counting model DeepCountingHandle DeepCountingHandle DeepCountingHandle DeepCountingHandle deepCountingHandle deep_counting_handle
in GenParamValue GenParamValue GenParamValue GenParamValue genParamValue gen_param_value 。
Note that when changing parameters that influence the template creation,
prepare_deep_counting_model prepare_deep_counting_model PrepareDeepCountingModel PrepareDeepCountingModel PrepareDeepCountingModel prepare_deep_counting_model must be called again before
the model can be applied with apply_deep_counting_model apply_deep_counting_model ApplyDeepCountingModel ApplyDeepCountingModel ApplyDeepCountingModel apply_deep_counting_model 。The following table gives an overview,
which parameters can be set
using set_deep_counting_model_param set_deep_counting_model_param SetDeepCountingModelParam SetDeepCountingModelParam SetDeepCountingModelParam set_deep_counting_model_param or create_deep_counting_model create_deep_counting_model CreateDeepCountingModel CreateDeepCountingModel CreateDeepCountingModel create_deep_counting_model
(set),
which can be retrieved using get_deep_counting_model_param get_deep_counting_model_param GetDeepCountingModelParam GetDeepCountingModelParam GetDeepCountingModelParam get_deep_counting_model_param
(get),
and which require re-running prepare_deep_counting_model prepare_deep_counting_model PrepareDeepCountingModel PrepareDeepCountingModel PrepareDeepCountingModel prepare_deep_counting_model after
changing them (prepare).
GenParamName GenParamName GenParamName GenParamName genParamName gen_param_name
set
get
Requires prepare
'angle_start' "angle_start" "angle_start" "angle_start" "angle_start" "angle_start"
x
x
x
'angle_step' "angle_step" "angle_step" "angle_step" "angle_step" "angle_step"
x
x
x
'angle_end' "angle_end" "angle_end" "angle_end" "angle_end" "angle_end"
x
x
x
'backbone_model' "backbone_model" "backbone_model" "backbone_model" "backbone_model" "backbone_model"
x
x
x
'device' "device" "device" "device" "device" "device"
x
x
x
'max_overlap' "max_overlap" "max_overlap" "max_overlap" "max_overlap" "max_overlap"
x
x
'min_score' "min_score" "min_score" "min_score" "min_score" "min_score"
x
x
'scale_max' "scale_max" "scale_max" "scale_max" "scale_max" "scale_max"
x
x
x
'scale_min' "scale_min" "scale_min" "scale_min" "scale_min" "scale_min"
x
x
x
'scale_step' "scale_step" "scale_step" "scale_step" "scale_step" "scale_step"
x
x
x
In the following the parameters are described:
'angle_start' "angle_start" "angle_start" "angle_start" "angle_start" "angle_start" , 'angle_step' "angle_step" "angle_step" "angle_step" "angle_step" "angle_step" , 'angle_end' "angle_end" "angle_end" "angle_end" "angle_end" "angle_end" :
Control the rotational augmentation.
Templates passed to prepare_deep_counting_model prepare_deep_counting_model PrepareDeepCountingModel PrepareDeepCountingModel PrepareDeepCountingModel prepare_deep_counting_model are rotated from
'angle_start' "angle_start" "angle_start" "angle_start" "angle_start" "angle_start" to 'angle_end' "angle_end" "angle_end" "angle_end" "angle_end" "angle_end" in steps of
'angle_step' "angle_step" "angle_step" "angle_step" "angle_step" "angle_step" .
This allows apply_deep_counting_model apply_deep_counting_model ApplyDeepCountingModel ApplyDeepCountingModel ApplyDeepCountingModel apply_deep_counting_model to better find rotated
instances of the templates.
The angles must be passed in radians.
建议值:
0 , -6.28 ,
-3.14 , 3.14 , 6.28
默认值:
'angle_start' "angle_start" "angle_start" "angle_start" "angle_start" "angle_start" = 0 ,
'angle_end' "angle_end" "angle_end" "angle_end" "angle_end" "angle_end" = 0 ,
'angle_step' "angle_step" "angle_step" "angle_step" "angle_step" "angle_step" = 'rad(30)' "rad(30)" "rad(30)" "rad(30)" "rad(30)" "rad(30)"
限制:
<= 'angle_start' "angle_start" "angle_start" "angle_start" "angle_start" "angle_start" <= 'angle_end' "angle_end" "angle_end" "angle_end" "angle_end" "angle_end" <=
,
'angle_step' "angle_step" "angle_step" "angle_step" "angle_step" "angle_step" > 0
'backbone_model' "backbone_model" "backbone_model" "backbone_model" "backbone_model" "backbone_model" :
The backbone used for the detection of the templates.
The backbone is automatically created by create_deep_counting_model create_deep_counting_model CreateDeepCountingModel CreateDeepCountingModel CreateDeepCountingModel create_deep_counting_model 。It can be obtained and written back in order to, for example,
optimize it using optimize_dl_model_for_inference optimize_dl_model_for_inference OptimizeDlModelForInference OptimizeDlModelForInference OptimizeDlModelForInference optimize_dl_model_for_inference 。
Note that the Deep Counting model will automatically set the input
size of the backbone according to the template and image sizes.
It has therefore no effect to change the backbone's input size,
and it is not recommended to do so.
Also note that the backbone can not be used for any other deep learning
methods besides Deep Counting.
'device' "device" "device" "device" "device" "device" :
Handle of the device on which the backbone will be
executed.
If the backbone was already optimized for a device, setting
'device' "device" "device" "device" "device" "device" might not be necessary anymore, see
optimize_dl_model_for_inference optimize_dl_model_for_inference OptimizeDlModelForInference OptimizeDlModelForInference OptimizeDlModelForInference optimize_dl_model_for_inference for details.
To get a tuple of handles of all available potentially deep-learning
capable hardware devices use query_available_dl_devices query_available_dl_devices QueryAvailableDlDevices QueryAvailableDlDevices QueryAvailableDlDevices query_available_dl_devices 。
默认值:
Handle of the default device, thus the GPU with index
0 . If not available, this is an empty tuple.
'max_overlap' "max_overlap" "max_overlap" "max_overlap" "max_overlap" "max_overlap" :
The maximum allowed intersection over union (IoU) for two detected
templates during counting.
When two templates have an IoU higher than 'max_overlap' "max_overlap" "max_overlap" "max_overlap" "max_overlap" "max_overlap" ,
the one with lower confidence value gets suppressed.
When set to 0 , no overlap at all is allowed.
We refer to the chapter Deep Learning / Object Detection and Instance Segmentation for
further explanations of the IoU.
建议值:
0.3 , 0.5 ,
0.7 , 1.0
默认值:
'max_overlap' "max_overlap" "max_overlap" "max_overlap" "max_overlap" "max_overlap" = 0.5
限制:
0 <= 'max_overlap' "max_overlap" "max_overlap" "max_overlap" "max_overlap" "max_overlap" <= 1
'min_score' "min_score" "min_score" "min_score" "min_score" "min_score" :
This parameter determines the minimum similarity of detected instances
to the original templates.
In other words, apply_deep_counting_model apply_deep_counting_model ApplyDeepCountingModel ApplyDeepCountingModel ApplyDeepCountingModel apply_deep_counting_model ignores all detected
instances with a similarity smaller than this value.
The similarity computed by the Deep Counting model lies between
0 and 1 , where 0 means no similarity and
1 is a very high similarity.
建议值:
0.2 , 0.3 ,
0.4 , 0.5
默认值:
'min_score' "min_score" "min_score" "min_score" "min_score" "min_score" = 0.4
限制:
0 < 'min_score' "min_score" "min_score" "min_score" "min_score" "min_score" <= 1
'scale_min' "scale_min" "scale_min" "scale_min" "scale_min" "scale_min" , 'scale_step' "scale_step" "scale_step" "scale_step" "scale_step" "scale_step" , 'scale_max' "scale_max" "scale_max" "scale_max" "scale_max" "scale_max" :
Control the scale augmentation.
Templates passed to prepare_deep_counting_model prepare_deep_counting_model PrepareDeepCountingModel PrepareDeepCountingModel PrepareDeepCountingModel prepare_deep_counting_model are scaled from
'scale_min' "scale_min" "scale_min" "scale_min" "scale_min" "scale_min" to 'scale_max' "scale_max" "scale_max" "scale_max" "scale_max" "scale_max" in steps of
'scale_step' "scale_step" "scale_step" "scale_step" "scale_step" "scale_step" .
This allows apply_deep_counting_model apply_deep_counting_model ApplyDeepCountingModel ApplyDeepCountingModel ApplyDeepCountingModel apply_deep_counting_model to better find scaled
instances of the templates.
建议值:
0.9 , 1.0 , 1.1
默认值:
'scale_min' "scale_min" "scale_min" "scale_min" "scale_min" "scale_min" = 1.0 ,
'scale_max' "scale_max" "scale_max" "scale_max" "scale_max" "scale_max" = 1.0 ,
'scale_step' "scale_step" "scale_step" "scale_step" "scale_step" "scale_step" = 0.1
限制:
0 < 'scale_min' "scale_min" "scale_min" "scale_min" "scale_min" "scale_min" <= 'scale_max' "scale_max" "scale_max" "scale_max" "scale_max" "scale_max" ,
'scale_step' "scale_step" "scale_step" "scale_step" "scale_step" "scale_step" > 0
执行信息
多线程类型:可重入(与非独占算子并行运行)。
多线程作用域:全局(可从任何线程调用)。
未采用并行化处理。
参数
DeepCountingHandle DeepCountingHandle DeepCountingHandle DeepCountingHandle deepCountingHandle deep_counting_handle (输入控制) deep_counting → HDlModelCounting , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
深度计数模型的句柄。
GenParamName GenParamName GenParamName GenParamName genParamName gen_param_name (输入控制) attribute.name → HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Name of the generic parameter.
默认值:
'angle_start'
"angle_start"
"angle_start"
"angle_start"
"angle_start"
"angle_start"
值列表:
'angle_end' "angle_end" "angle_end" "angle_end" "angle_end" "angle_end" , 'angle_start' "angle_start" "angle_start" "angle_start" "angle_start" "angle_start" , 'angle_step' "angle_step" "angle_step" "angle_step" "angle_step" "angle_step" , 'backbone_model' "backbone_model" "backbone_model" "backbone_model" "backbone_model" "backbone_model" , 'device' "device" "device" "device" "device" "device" , 'max_overlap' "max_overlap" "max_overlap" "max_overlap" "max_overlap" "max_overlap" , 'min_score' "min_score" "min_score" "min_score" "min_score" "min_score" , 'scale_max' "scale_max" "scale_max" "scale_max" "scale_max" "scale_max" , 'scale_min' "scale_min" "scale_min" "scale_min" "scale_min" "scale_min" , 'scale_step' "scale_step" "scale_step" "scale_step" "scale_step" "scale_step"
GenParamValue GenParamValue GenParamValue GenParamValue genParamValue gen_param_value (输出控制) attribute.name → HTuple Union[str, float, int] HTuple Htuple (real / string / integer) (double / string / int / long) (double / HString / Hlong) (double / char* / Hlong)
Value of the generic parameter.
结果
如果模型的句柄有效,算子
get_deep_counting_model_param get_deep_counting_model_param GetDeepCountingModelParam GetDeepCountingModelParam GetDeepCountingModelParam get_deep_counting_model_param 返回值 2 ( H_MSG_TRUE )。如有必要,则抛出异常。
可能的前趋
create_deep_counting_model create_deep_counting_model CreateDeepCountingModel CreateDeepCountingModel CreateDeepCountingModel create_deep_counting_model ,
set_deep_counting_model_param set_deep_counting_model_param SetDeepCountingModelParam SetDeepCountingModelParam SetDeepCountingModelParam set_deep_counting_model_param ,
read_deep_counting_model read_deep_counting_model ReadDeepCountingModel ReadDeepCountingModel ReadDeepCountingModel read_deep_counting_model
可能的后继
apply_deep_counting_model apply_deep_counting_model ApplyDeepCountingModel ApplyDeepCountingModel ApplyDeepCountingModel apply_deep_counting_model
另见
set_deep_counting_model_param set_deep_counting_model_param SetDeepCountingModelParam SetDeepCountingModelParam SetDeepCountingModelParam set_deep_counting_model_param
模块
匹配