generalized_eigenvalues_symmetric_matrix T_generalized_eigenvalues_symmetric_matrix GeneralizedEigenvaluesSymmetricMatrix GeneralizedEigenvaluesSymmetricMatrix generalized_eigenvalues_symmetric_matrix (算子)
名称
generalized_eigenvalues_symmetric_matrix T_generalized_eigenvalues_symmetric_matrix GeneralizedEigenvaluesSymmetricMatrix GeneralizedEigenvaluesSymmetricMatrix generalized_eigenvalues_symmetric_matrix — 计算对称输入矩阵的广义特征值和可选的广义特征向量。
签名
void GeneralizedEigenvaluesSymmetricMatrix (const HTuple& MatrixAID , const HTuple& MatrixBID , const HTuple& ComputeEigenvectors , HTuple* EigenvaluesID , HTuple* EigenvectorsID )
HMatrix HMatrix ::GeneralizedEigenvaluesSymmetricMatrix (const HMatrix& MatrixBID , const HString& ComputeEigenvectors , HMatrix* EigenvectorsID ) const
HMatrix HMatrix ::GeneralizedEigenvaluesSymmetricMatrix (const HMatrix& MatrixBID , const char* ComputeEigenvectors , HMatrix* EigenvectorsID ) const
HMatrix HMatrix ::GeneralizedEigenvaluesSymmetricMatrix (const HMatrix& MatrixBID , const wchar_t* ComputeEigenvectors , HMatrix* EigenvectorsID ) const
(
Windows only)
描述
算子 generalized_eigenvalues_symmetric_matrix generalized_eigenvalues_symmetric_matrix GeneralizedEigenvaluesSymmetricMatrix GeneralizedEigenvaluesSymmetricMatrix GeneralizedEigenvaluesSymmetricMatrix generalized_eigenvalues_symmetric_matrix
computes all generalized eigenvalues and, optionally, generalized
eigenvectors of the symmetric matrix MatrixA and the
symmetric positive definite matrix MatrixB. Both
matrices must have identical dimensions. The matrices are
defined by the matrix handles MatrixAID MatrixAID MatrixAID MatrixAID matrixAID matrix_aid and
MatrixBID MatrixBID MatrixBID MatrixBID matrixBID matrix_bid . On output, a new matrix Eigenvalues
with the generalized eigenvalues in ascending order and,
optionally, a new matrix
Eigenvectors with the generalized eigenvectors is
created. Each jth column of the matrix Eigenvectors
contains the related eigenvector to the jth eigenvalue. The
operator returns the matrix handles EigenvaluesID EigenvaluesID EigenvaluesID EigenvaluesID eigenvaluesID eigenvalues_id and
EigenvectorsID EigenvectorsID EigenvectorsID EigenvectorsID eigenvectorsID eigenvectors_id of the matrices Eigenvalues and
Eigenvectors. Access to the elements of the matrices is
possible, e.g., with the operator get_full_matrix get_full_matrix GetFullMatrix GetFullMatrix GetFullMatrix get_full_matrix or
get_sub_matrix get_sub_matrix GetSubMatrix GetSubMatrix GetSubMatrix get_sub_matrix 。
The computation of generalized eigenvectors can be selected via
ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors computeEigenvectors compute_eigenvectors = 'true' "true" "true" "true" "true" "true" . The formula for
the calculation of the result is
with
representing the
th eigenvalue and
represents the corresponding eigenvector.
If ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors computeEigenvectors compute_eigenvectors = 'false' "false" "false" "false" "false" "false" , no generalized
eigenvectors are computed. For this, the matrix handle
EigenvectorsID EigenvectorsID EigenvectorsID EigenvectorsID eigenvectorsID eigenvectors_id is invalid.
示例:
ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors computeEigenvectors compute_eigenvectors = 'true' "true" "true" "true" "true" "true"
注意
The upper triangular parts of the input matrices MatrixA
and MatrixB must contain the relevant information of the
matrices. The strictly lower triangular parts of the matrices are
not referenced. If the referenced parts of the input matrices
MatrixA or MatrixB are not of the specified
type, an exception is raised.
执行信息
多线程类型:可重入(与非独占算子并行运行)。
多线程作用域:全局(可从任何线程调用)。
未采用并行化处理。
参数
MatrixAID MatrixAID MatrixAID MatrixAID matrixAID matrix_aid (输入控制) matrix → HMatrix , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Matrix handle of the symmetric input matrix A.
MatrixBID MatrixBID MatrixBID MatrixBID matrixBID matrix_bid (输入控制) matrix → HMatrix , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Matrix handle of the symmetric positive
definite input matrix B.
ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors ComputeEigenvectors computeEigenvectors compute_eigenvectors (输入控制) string → HTuple str HTuple Htuple (string) (string ) (HString ) (char* )
Computation of the eigenvectors.
默认值:
'false'
"false"
"false"
"false"
"false"
"false"
值列表:
'false' "false" "false" "false" "false" "false" , 'true' "true" "true" "true" "true" "true"
EigenvaluesID EigenvaluesID EigenvaluesID EigenvaluesID eigenvaluesID eigenvalues_id (输出控制) matrix → HMatrix , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Matrix handle with the eigenvalues.
EigenvectorsID EigenvectorsID EigenvectorsID EigenvectorsID eigenvectorsID eigenvectors_id (输出控制) matrix → HMatrix , HTuple HHandle HTuple Htuple (handle) (IntPtr ) (HHandle ) (handle )
Matrix handle with the eigenvectors.
结果
如果参数有效,算子
generalized_eigenvalues_symmetric_matrix generalized_eigenvalues_symmetric_matrix GeneralizedEigenvaluesSymmetricMatrix GeneralizedEigenvaluesSymmetricMatrix GeneralizedEigenvaluesSymmetricMatrix generalized_eigenvalues_symmetric_matrix 返回值 2 ( H_MSG_TRUE )。如有必要,则抛出异常。
可能的前趋
create_matrix create_matrix CreateMatrix CreateMatrix CreateMatrix create_matrix
可能的后继
get_full_matrix get_full_matrix GetFullMatrix GetFullMatrix GetFullMatrix get_full_matrix ,
get_value_matrix get_value_matrix GetValueMatrix GetValueMatrix GetValueMatrix get_value_matrix
替代
generalized_eigenvalues_general_matrix generalized_eigenvalues_general_matrix GeneralizedEigenvaluesGeneralMatrix GeneralizedEigenvaluesGeneralMatrix GeneralizedEigenvaluesGeneralMatrix generalized_eigenvalues_general_matrix
另见
eigenvalues_symmetric_matrix eigenvalues_symmetric_matrix EigenvaluesSymmetricMatrix EigenvaluesSymmetricMatrix EigenvaluesSymmetricMatrix eigenvalues_symmetric_matrix ,
eigenvalues_general_matrix eigenvalues_general_matrix EigenvaluesGeneralMatrix EigenvaluesGeneralMatrix EigenvaluesGeneralMatrix eigenvalues_general_matrix
参考文献
David Poole: “Linear Algebra: A Modern Introduction”; Thomson;
Belmont; 2006.
Gene H. Golub, Charles F. van Loan: “Matrix Computations”; The
Johns Hopkins University Press; Baltimore and London; 1996.
模块
基础